Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 6(8): 1064-1076, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879539

RESUMEN

Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.


Asunto(s)
Cambio Climático , Ecosistema , Carbono , Plantas
2.
Glob Chang Biol ; 23(4): 1564-1574, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27520482

RESUMEN

The arid and semi-arid drylands of the world are increasingly recognized for their role in the terrestrial net carbon dioxide (CO2 ) uptake, which depends largely on plant litter decomposition and the subsequent release of CO2 back to the atmosphere. Observed decomposition rates in drylands are higher than predictions by biogeochemical models, which are traditionally based on microbial (biotic) degradation enabled by precipitation as the main mechanism of litter decomposition. Consequently, recent research in drylands has focused on abiotic mechanisms, mainly photochemical and thermal degradation, but they only partly explain litter decomposition under dry conditions, suggesting the operation of an additional mechanism. Here we show that in the absence of precipitation, absorption of dew and water vapor by litter in the field enables microbial degradation at night. By experimentally manipulating solar irradiance and nighttime air humidity, we estimated that most of the litter CO2 efflux and decay occurring in the dry season was due to nighttime microbial degradation, with considerable additional contributions from photochemical and thermal degradation during the daytime. In a complementary study, at three sites across the Mediterranean Basin, litter CO2 efflux was largely explained by litter moisture driving microbial degradation and ultraviolet radiation driving photodegradation. We further observed mutual enhancement of microbial activity and photodegradation at a daily scale. Identifying the interplay of decay mechanisms enhances our understanding of carbon turnover in drylands, which should improve the predictions of the long-term trend of global carbon sequestration.


Asunto(s)
Dióxido de Carbono , Hojas de la Planta , Rayos Ultravioleta , Clima Desértico , Ecosistema , Plantas , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...