Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666771

RESUMEN

Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.


Asunto(s)
Microscopía por Crioelectrón , Guanosina Trifosfato , Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/química , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Conformación Proteica , Regulación Alostérica , Modelos Moleculares , Multimerización de Proteína , Humanos
2.
Proteomics ; 23(23-24): e2200410, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37671599

RESUMEN

Trans-activation response DNA binding protein of 43 kDa (TDP-43) regulates a great variety of cellular processes in the nucleus and cytosol. In addition, a defined subset of neurodegenerative diseases is characterized by nuclear depletion of TDP-43 as well as cytosolic mislocalization and aggregation. To perform its diverse functions TDP-43 can associate with different ribonucleoprotein complexes. Combined with transcriptomics, MS interactome studies have unveiled associations between TDP-43 and the spliceosome machinery, polysomes and RNA granules. Moreover, the highly dynamic, low-valency interactions regulated by its low-complexity domain calls for innovative proximity labeling methodologies. In addition to protein partners, the analysis of post-translational modifications showed that they may play a role in the nucleocytoplasmic shuttling, RNA binding, liquid-liquid phase separation and protein aggregation of TDP-43. Here we review the various TDP-43 ribonucleoprotein complexes characterized so far, how they contribute to the diverse functions of TDP-43, and roles of post-translational modifications. Further understanding of the fluid dynamic properties of TDP-43 in ribonucleoprotein complexes, RNA granules, and self-assemblies will advance the understanding of RNA processing in cells and perhaps help to develop novel therapeutic approaches for TDPopathies.


Asunto(s)
Agregado de Proteínas , Proteómica , Proteínas de Unión al ADN/genética , Ribonucleoproteínas
3.
ACS Chem Neurosci ; 14(11): 1971-1980, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37200505

RESUMEN

Missense mutations along the leucine-rich repeat kinase 2 (LRRK2) protein are a major contributor to Parkinson's Disease (PD), the second most commonly occurring neurodegenerative disorder worldwide. We recently reported the development of allosteric constrained peptide inhibitors that target and downregulate LRRK2 activity through disruption of LRRK2 dimerization. In this study, we designed doubly constrained peptides with the objective of inhibiting C-terminal of Roc (COR)-COR mediated dimerization at the LRRK2 dimer interface. We show that the doubly constrained peptides are cell-permeant, bind wild-type and pathogenic LRRK2, inhibit LRRK2 dimerization and kinase activity, and inhibit LRRK2-mediated neuronal apoptosis, and in contrast to ATP-competitive LRRK2 kinase inhibitors, they do not induce the mislocalization of LRRK2 to skein-like structures in cells. This work highlights the significance of COR-mediated dimerization in LRRK2 activity while also highlighting the use of doubly constrained peptides to stabilize discrete secondary structural folds within a peptide sequence.


Asunto(s)
Péptidos , Proteínas Serina-Treonina Quinasas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Dimerización , Leucina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Péptidos/farmacología , Péptidos/metabolismo , Mutación
4.
Nat Commun ; 13(1): 1223, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264561

RESUMEN

Trans-activation response DNA-binding protein of 43 kDa (TDP-43) regulates RNA processing and forms neuropathological aggregates in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Investigating TDP-43 post-translational modifications, we discovered that K84 acetylation reduced nuclear import whereas K136 acetylation impaired RNA binding and splicing capabilities of TDP-43. Such failure of RNA interaction triggered TDP-43 phase separation mediated by the C-terminal low complexity domain, leading to the formation of insoluble aggregates with pathologically phosphorylated and ubiquitinated TDP-43. Introduction of acetyl-lysine at the identified sites via amber suppression confirmed the results from site-directed mutagenesis. K84-acetylated TDP-43 showed cytoplasmic mislocalization, and the aggregation propensity of K136-acetylated TDP-43 was confirmed. We generated antibodies selective for TDP-43 acetylated at these lysines, and found that sirtuin-1 can potently deacetylate K136-acetylated TDP-43 and reduce its aggregation propensity. Thus, distinct lysine acetylations modulate nuclear import, RNA binding and phase separation of TDP-43, suggesting regulatory mechanisms for TDP-43 pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Lisina , Sirtuina 1 , Acetilación , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Lisina/metabolismo , Agregación Patológica de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , ARN/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217606

RESUMEN

Mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) are a leading cause of the inherited form of Parkinson's disease (PD), while LRRK2 overactivation is also associated with the more common idiopathic form of PD. LRRK2 is a large multidomain protein, including a GTPase as well as a Ser/Thr protein kinase domain. Common, disease-causing mutations increase LRRK2 kinase activity, presenting LRRK2 as an attractive target for drug discovery. Currently, drug development has mainly focused on ATP-competitive kinase inhibitors. Here, we report the identification and characterization of a variety of nanobodies that bind to different LRRK2 domains and inhibit or activate LRRK2 in cells and in in vitro. Importantly, nanobodies were identified that inhibit LRRK2 kinase activity while binding to a site that is topographically distinct from the active site and thus act through an allosteric inhibitory mechanism that does not involve binding to the ATP pocket or even to the kinase domain. Moreover, while certain nanobodies completely inhibit the LRRK2 kinase activity, we also identified nanobodies that specifically inhibit the phosphorylation of Rab protein substrates. Finally, in contrast to current type I kinase inhibitors, the studied kinase-inhibitory nanobodies did not induce LRRK2 microtubule association. These comprehensively characterized nanobodies represent versatile tools to study the LRRK2 function and mechanism and can pave the way toward novel diagnostic and therapeutic strategies for PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/metabolismo , Anticuerpos de Dominio Único , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Mapeo Epitopo , Células HEK293 , Humanos , Ratones , Microtúbulos/metabolismo , Fosforilación , Unión Proteica , Células RAW 264.7 , Proteínas de Unión al GTP rab/metabolismo
6.
ACS Chem Biol ; 16(11): 2326-2338, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34496561

RESUMEN

Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein with dual kinase and GTPase function that is commonly mutated in both familial and idiopathic Parkinson's Disease (PD). While dimerization of LRRK2 is commonly detected in PD models, it remains unclear whether inhibition of dimerization can regulate catalytic activity and pathogenesis. Here, we show constrained peptides that are cell-penetrant, bind LRRK2, and inhibit LRRK2 activation by downregulating dimerization. We further show that inhibited dimerization decreases kinase activity and inhibits ROS production and PD-linked apoptosis in primary cortical neurons. While many ATP-competitive LRRK2 inhibitors induce toxicity and mislocalization of the protein in cells, these constrained peptides were found to not affect LRRK2 localization. The ability of these peptides to inhibit pathogenic LRRK2 kinase activity suggests that disruption of dimerization may serve as a new allosteric strategy to downregulate PD-related signaling pathways.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Enfermedad de Parkinson/enzimología , Péptidos/farmacología , Regulación Alostérica , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Dimerización , Activación Enzimática , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/patología , Péptidos/química , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Cancers (Basel) ; 13(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34298830

RESUMEN

The ubiquitin E3 ligase TNF Receptor Associated Factor 6 (TRAF6) participates in a large number of different biological processes including innate immunity, differentiation and cell survival, raising the need to specify and shape the signaling output. Here, we identify a lipopolysaccharide (LPS)-dependent increase in TRAF6 association with the kinase IKKε (inhibitor of NF-κB kinase subunit ε) and IKKε-mediated TRAF6 phosphorylation at five residues. The reconstitution of TRAF6-deficient cells, with TRAF6 mutants representing phosphorylation-defective or phospho-mimetic TRAF6 variants, showed that the phospho-mimetic TRAF6 variant was largely protected from basal ubiquitin/proteasome-mediated degradation, and also from autophagy-mediated decay in autolysosomes induced by metabolic perturbation. In addition, phosphorylation of TRAF6 and its E3 ligase function differentially shape basal and LPS-triggered signaling networks, as revealed by phosphoproteome analysis. Changes in LPS-triggered phosphorylation networks of cells that had experienced autophagy are partially dependent on TRAF6 and its phosphorylation status, suggesting an involvement of this E3 ligase in the interplay between metabolic and inflammatory circuits.

8.
Proc Natl Acad Sci U S A ; 117(38): 23925-23931, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900929

RESUMEN

Medin is the most common amyloid known in humans, as it can be found in blood vessels of the upper body in virtually everybody over 50 years of age. However, it remains unknown whether deposition of Medin plays a causal role in age-related vascular dysfunction. We now report that aggregates of Medin also develop in the aorta and brain vasculature of wild-type mice in an age-dependent manner. Strikingly, genetic deficiency of the Medin precursor protein, MFG-E8, eliminates not only vascular aggregates but also prevents age-associated decline of cerebrovascular function in mice. Given the prevalence of Medin aggregates in the general population and its role in vascular dysfunction with aging, targeting Medin may become a novel approach to sustain healthy aging.


Asunto(s)
Envejecimiento/metabolismo , Amiloide/metabolismo , Antígenos de Superficie/metabolismo , Proteínas de la Leche/metabolismo , Enfermedades Vasculares/metabolismo , Anciano de 80 o más Años , Amiloide/genética , Animales , Antígenos de Superficie/genética , Aorta/metabolismo , Aorta/patología , Química Encefálica/fisiología , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de la Leche/genética , Enfermedades Vasculares/patología
9.
Front Neurosci ; 14: 485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508578

RESUMEN

The Parkinson's disease-associated Leucine-rich repeat kinase 2 (LRRK2) is a complex multi-domain protein belonging to the Roco protein family, a unique group of G-proteins. Variants of this gene are associated with an increased risk of Parkinson's disease. Besides its well-characterized enzymatic activities, conferred by its GTPase and kinase domains, and a central dimerization domain, it contains four predicted repeat domains, which are, based on their structure, commonly involved in protein-protein interactions (PPIs). In the past decades, tremendous progress has been made in determining comprehensive interactome maps for the human proteome. Knowledge of PPIs has been instrumental in assigning functions to proteins involved in human disease and helped to understand the connectivity between different disease pathways and also significantly contributed to the functional understanding of LRRK2. In addition to an increased kinase activity observed for proteins containing PD-associated variants, various studies helped to establish LRRK2 as a large scaffold protein in the interface between cytoskeletal dynamics and the vesicular transport. This review first discusses a number of specific LRRK2-associated PPIs for which a functional consequence can at least be speculated upon, and then considers the representation of LRRK2 protein interactions in public repositories, providing an outlook on open research questions and challenges in this field.

10.
Nat Commun ; 11(1): 1268, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152317

RESUMEN

Regulation of mitosis secures cellular integrity and its failure critically contributes to the development, maintenance, and treatment resistance of cancer. In yeast, the dual phosphatase Cdc14 controls mitotic progression by antagonizing Cdk1-mediated protein phosphorylation. By contrast, specific mitotic functions of the mammalian Cdc14 orthologue CDC14B have remained largely elusive. Here, we find that CDC14B antagonizes CDK1-mediated activating mitotic phosphorylation of the deubiquitinase USP9X at serine residue 2563, which we show to be essential for USP9X to mediate mitotic survival. Starting from an unbiased proteome-wide screening approach, we specify Wilms' tumor protein 1 (WT1) as the relevant substrate that becomes deubiquitylated and stabilized by serine 2563-phosphorylated USP9X in mitosis. We further demonstrate that WT1 functions as a mitotic transcription factor and specify CXCL8/IL-8 as a target gene of WT1 that conveys mitotic survival. Together, we describe a ubiquitin-dependent signaling pathway that directs a mitosis-specific transcription program to regulate mitotic survival.


Asunto(s)
Proteína Quinasa CDC2/antagonistas & inhibidores , Fosfatasas de Especificidad Dual/antagonistas & inhibidores , Mitosis/fisiología , Ubiquitina Tiolesterasa/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Proteínas WT1/metabolismo , Células A549 , Apoptosis , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Interleucina-8/metabolismo , Fosforilación , Factores de Transcripción , Ubiquitina Tiolesterasa/genética , Proteínas WT1/genética
11.
Sci Rep ; 10(1): 3799, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123243

RESUMEN

The LRRK2 protein consists of multiple functional domains, including protein-binding domains at its N and C-terminus. Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) have been linked to familial and sporadic Parkinson's disease (PD). We have recently described a novel variant falling within the N-terminal armadillo repeats, E193K. Herein, our aim is to investigate the functional impact of LRRK2 N-terminal domain and the E193K variant on vesicle trafficking. By combining Total Internal Reflection Fluorescence (TIRF) microscopy and a synaptopHluorin assay, we found that expression of a construct lacking the N-terminal domain increases the frequency and amplitude of spontaneous synaptic events. Complementary biochemical approaches showed that the E193K variant alters the binding properties of LRRK2, decreases LRRK2 binding to synaptic vesicles, and promotes vesicle fusion. Our results confirm the physiological and pathological relevance of the nature of the LRRK2-associated macro-molecular complex solidifying the idea that different pathological mutations critically alter the scaffolding function of LRRK2 resulting in a perturbation of the vesicular trafficking as a common denominator.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Vesículas Sinápticas/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación Missense , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Dominios Proteicos , Transporte de Proteínas , Vesículas Sinápticas/genética
12.
Elife ; 82019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31718772

RESUMEN

Intracellular trafficking depends on the function of Rab GTPases, whose activation is regulated by guanine exchange factors (GEFs). The Rab5 GEF, Rabex5, was previously proposed to be auto-inhibited by its C-terminus. Here, we studied full-length Rabex5 and Rabaptin5 proteins as well as domain deletion Rabex5 mutants using hydrogen deuterium exchange mass spectrometry. We generated a structural model of Rabex5, using chemical cross-linking mass spectrometry and integrative modeling techniques. By correlating structural changes with nucleotide exchange activity for each construct, we uncovered new auto-regulatory roles for the ubiquitin binding domains and the Linker connecting those domains to the catalytic core of Rabex5. We further provide evidence that enhanced dynamics in the catalytic core are linked to catalysis. Our results suggest a more complex auto-regulation mechanism than previously thought and imply that ubiquitin binding serves not only to position Rabex5 but to also control its Rab5 GEF activity through allosteric structural alterations.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Ubiquitina/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Dominio Catalítico , Línea Celular , Humanos , Unión Proteica , Transporte de Proteínas
13.
Blood ; 134(14): 1159-1175, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31366618

RESUMEN

Hematopoietic transcription factor LIM domain only 2 (LMO2), a member of the TAL1 transcriptional complex, plays an essential role during early hematopoiesis and is frequently activated in T-cell acute lymphoblastic leukemia (T-ALL) patients. Here, we demonstrate that LMO2 is activated by deacetylation on lysine 74 and 78 via the nicotinamide phosphoribosyltransferase (NAMPT)/sirtuin 2 (SIRT2) pathway. LMO2 deacetylation enables LMO2 to interact with LIM domain binding 1 and activate the TAL1 complex. NAMPT/SIRT2-mediated activation of LMO2 by deacetylation appears to be important for hematopoietic differentiation of induced pluripotent stem cells and blood formation in zebrafish embryos. In T-ALL, deacetylated LMO2 induces expression of TAL1 complex target genes HHEX and NKX3.1 as well as LMO2 autoregulation. Consistent with this, inhibition of NAMPT or SIRT2 suppressed the in vitro growth and in vivo engraftment of T-ALL cells via diminished LMO2 deacetylation. This new molecular mechanism may provide new therapeutic possibilities in T-ALL and may contribute to the development of new methods for in vitro generation of blood cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hematopoyesis , Proteínas con Dominio LIM/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Acetilación , Animales , Células Cultivadas , Células HEK293 , Humanos , Leucopoyesis , Ratones , Modelos Moleculares , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Pez Cebra
14.
J Biol Chem ; 294(2): 644-661, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30455355

RESUMEN

Ataxin-3 is a deubiquitinating enzyme and the affected protein in the neurodegenerative disorder Machado-Joseph disease (MJD). The ATXN3 gene is alternatively spliced, resulting in protein isoforms that differ in the number of ubiquitin-interacting motifs. Additionally, nonsynonymous SNPs in ATXN3 cause amino acid changes in ataxin-3, and one of these polymorphisms introduces a premature stop codon in one isoform. Here, we examined the effects of different ataxin-3 isoforms and of the premature stop codon on ataxin-3's physiological function and on main disease mechanisms. At the physiological level, we show that alternative splicing and the premature stop codon alter ataxin-3 stability and that ataxin-3 isoforms differ in their enzymatic deubiquitination activity, subcellular distribution, and interaction with other proteins. At the pathological level, we found that the expansion of the polyglutamine repeat leads to a stabilization of ataxin-3 and that ataxin-3 isoforms differ in their aggregation properties. Interestingly, we observed a functional interaction between normal and polyglutamine-expanded ATXN3 allelic variants. We found that interactions between different ATXN3 allelic variants modify the physiological and pathophysiological properties of ataxin-3. Our findings indicate that alternative splicing and interactions between different ataxin-3 isoforms affect not only major aspects of ataxin-3 function but also MJD pathogenesis. Our results stress the importance of considering isoforms of disease-causing proteins and their interplay with the normal allelic variant as disease modifiers in MJD and autosomal-dominantly inherited diseases in general.


Asunto(s)
Empalme Alternativo , Ataxina-3/genética , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/genética , Agregación Patológica de Proteínas/genética , Ataxina-3/análisis , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Polimorfismo de Nucleótido Simple , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Mapas de Interacción de Proteínas , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Ubiquitina/metabolismo
15.
Mov Disord ; 34(4): 496-505, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30485545

RESUMEN

BACKGROUND: Genetic variability in LRRK2 has been unequivocally established as a major risk factor for familial and sporadic forms of PD in ethnically diverse populations. OBJECTIVES: To resolve the role of LRRK2 in the Indian population. METHODS: We performed targeted resequencing of the LRRK2 locus in 288 cases and 298 controls and resolved the haplotypic structure of LRRK2 in a combined cohort of 800 cases and 402 controls in the Indian population. We assessed the frequency of novel missense variants in the white and East Asian population by leveraging exome sequencing and densely genotype data, respectively. We did computational modeling and biochemical approach to infer the potential role of novel variants impacting the LRRK2 protein function. Finally, we assessed the phosphorylation activity of identified novel coding variants in the LRRK2 gene. RESULTS: We identified four novel missense variants with frequency ranging from 0.0008% to 0.002% specific for the Indian population, encompassing armadillo and kinase domains of the LRRK2 protein. A common genetic variability within LRRK2 may contribute to increased risk, but it was nonsignificant after correcting for multiple testing, because of small cohort size. The computational modeling showed destabilizing effect on the LRRK2 function. In comparison to the wild-type, the kinase domain variant showed 4-fold increase in the kinase activity. CONCLUSIONS: Our study, for the first time, identified novel missense variants for LRRK2, specific for the Indian population, and showed that a novel missense variant in the kinase domain modifies kinase activity in vitro. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Femenino , Frecuencia de los Genes , Genotipo , Haplotipos , Humanos , India , Masculino , Persona de Mediana Edad , Mutación Missense , Adulto Joven
16.
Sci Rep ; 8(1): 16196, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385877

RESUMEN

The intellectual disability gene, Sox11, encodes for a critical neurodevelopmental transcription factor with functions in precursor survival, neuronal fate determination, migration and morphogenesis. The mechanisms regulating SOX11's activity remain largely unknown. Mass spectrometric analysis uncovered that SOX11 can be post-translationally modified by phosphorylation. Here, we report that phosphorylatable serines surrounding the high-mobility group box modulate SOX11's transcriptional activity. Through Mass Spectrometry (MS), co-immunoprecipitation assays and in vitro phosphorylation assays followed by MS we verified that protein kinase A (PKA) interacts with SOX11 and phosphorylates it on S133. In vivo replacement of SoxC factors in developing adult-generated hippocampal neurons with SOX11 S133 phospho-mutants indicated that phosphorylation on S133 modulates dendrite development of adult-born dentate granule neurons, while reporter assays suggested that S133 phosphorylation fine-tunes the activation of select target genes. These data provide novel insight into the control of the critical neurodevelopmental regulator SOX11 and imply SOX11 as a mediator of PKA-regulated neuronal development.


Asunto(s)
Morfogénesis/genética , Neurogénesis/genética , Neuronas/metabolismo , Factores de Transcripción SOXC/genética , Animales , Núcleos Cerebelosos/crecimiento & desarrollo , Núcleos Cerebelosos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dendritas/genética , Dendritas/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Espectrometría de Masas , Ratones , Fosforilación/genética , Serina/genética
17.
J Biol Chem ; 293(41): 16083-16099, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30120199

RESUMEN

TAR DNA-binding protein of 43 kDa (TDP-43) forms pathological aggregates in neurodegenerative diseases, particularly in certain forms of frontotemporal dementia and amyotrophic lateral sclerosis. Pathological modifications of TDP-43 include proteolytic fragmentation, phosphorylation, and ubiquitinylation. A pathognomonic TDP-43 C-terminal fragment (CTF) spanning amino acids 193-414 contains only four lysine residues that could be potentially ubiquitinylated. Here, serial mutagenesis of these four lysines to arginine revealed that not a single residue is responsible for the ubiquitinylation of mCherry-tagged CTF. Removal of all four lysines was necessary to suppress ubiquitinylation. Interestingly, Lys-408 substitution enhanced the pathological phosphorylation of the immediately adjacent serine residues 409/410 in the context of mCherry-CTF. Thus, Lys-408 ubiquitinylation appears to hinder Ser-409/410 phosphorylation in TDP-43 CTF. However, we did not observe the same effect for full-length TDP-43. We extended the mutagenesis study to full-length TDP-43 and performed MS. Ubiquitinylated lysine residues were identified in the nuclear localization sequence (NLS; Lys-84 and Lys-95) and RNA-binding region (mostly Lys-160, Lys-181, and Lys-263). Mutagenesis of Lys-84 confirmed its importance as the major determinant for nuclear import, whereas Lys-95 mutagenesis did not significantly affect TDP-43's nucleo-cytoplasmic distribution, solubility, aggregation, and RNA-processing activities. Nevertheless, the K95A mutant had significantly reduced Ser-409/410 phosphorylation, emphasizing the suspected interplay between TDP-43 ubiquitinylation and phosphorylation. Collectively, our analysis of TDP-43 ubiquitinylation sites indicates that the NLS residues Lys-84 and Lys-95 have more prominent roles in TDP-43 function than the more C-terminal lysines and suggests a link between specific ubiquitinylation events and pathological TDP-43 phosphorylation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ubiquitina/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Lisina/química , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación , Procesamiento Proteico-Postraduccional , Solubilidad
18.
Biol Chem ; 399(12): 1447-1456, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30067506

RESUMEN

Roco proteins have come into focus after mutations in the gene coding for the human Roco protein Leucine-rich repeat kinase 2 (LRRK2) were discovered to be one of the most common genetic causes of late onset Parkinson's disease. Roco proteins are characterized by a Roc domain responsible for GTP binding and hydrolysis, followed by a COR dimerization device. The regulation and function of this RocCOR domain tandem is still not completely understood. To fully biochemically characterize Roco proteins, we performed a systematic survey of the kinetic properties of several Roco protein family members, including LRRK2. Together, our results show that Roco proteins have a unique G-protein cycle. Our results confirm that Roco proteins have a low nucleotide affinity in the micromolar range and thus do not strictly depend on G-nucleotide exchange factors. Measurement of multiple and single turnover reactions shows that neither Pi nor GDP release are rate-limiting, while this is the case for the GAP-mediated GTPase reaction of some small G-proteins like Ras and for most other high affinity Ras-like proteins, respectively. The KM values of the reactions are in the range of the physiological GTP concentration, suggesting that LRRK2 functioning might be regulated by the cellular GTP level.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Cinética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación
19.
Front Mol Neurosci ; 11: 211, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29973868

RESUMEN

SOX11 is a key Transcription Factor (TF) in the regulation of embryonic and adult neurogenesis, whose mutation has recently been linked to an intellectual disability syndrome in humans. SOX11's transient activity during neurogenesis is critical to ensure the precise execution of the neurogenic program. Here, we report that SOX11 displays differential subcellular localizations during the course of neurogenesis. Western-Blot analysis of embryonic mouse brain lysates indicated that SOX11 is post-translationally modified by phosphorylation. Using Mass Spectrometry, we found 10 serine residues in the SOX11 protein that are putatively phosphorylated. Systematic analysis of phospho-mutant SOX11 resulted in the identification of the S30 residue, whose phosphorylation promotes nuclear over cytoplasmic localization of SOX11. Collectively, these findings uncover phosphorylation as a novel layer of regulation of the intellectual disability gene Sox11.

20.
Biol Chem ; 399(7): 637-642, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29894291

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain protein and its mutations can lead to Parkinson's disease. Recent studies on LRRK2 and homologue proteins have advanced our mechanistic understanding of LRRK2 regulation. Here, we summarize the available data on the biochemistry and structure of LRRK2 and postulate three possible layers of regulation, translocation, monomer-dimer equilibrium and intramolecular activation of domains.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...