Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 319: 120907, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36586557

RESUMEN

To develop models that support site-specific risk assessment for nanoparticles (NPs), a better understanding of how NP transformation processes, bioavailability and toxicity are influenced by soil properties is needed. In this study, the influence of differing soil properties on the bioavailability and toxicity of zinc oxide (ZnO) NPs and ionic Zn to the earthworm Eisenia fetida was investigated. Earthworms were exposed to ZnO_NPs and ionic Zn, between 100 and 4400 mg Zn/kg, in four different natural soils (organic matter content: 1.8-16.7%, soil pH: 5.4-8.3, representing sandy loam to calcareous soils). Survival and reproduction were assessed after 28 and 56 days, respectively. Zn concentrations in soil pore waters were measured while labile concentrations of Zn were measured using an in-situ dynamic speciation technique (diffusive gradient in thin films, DGT). Earthworm Zn tissue concentrations were also measured. Soil properties influenced earthworm reproduction between soil controls, with highest reproductive output in soils with pH values of 6-7. Toxicity was also influenced by soil properties, with EC50s based on total Zn in soil ranging from 694 to >2200 mg Zn/kg for ZnO_NP and 277-734 mg Zn/kg for ionic Zn. Soil pore water and DGT measurements showed good agreement in the relative amount of Zn extracted across the four soils. Earthworms exposed to ZnO_NPs survived higher Zn concentrations in the soils and had higher tissue concentrations compared with ionic Zn exposures, particularly in the high organic content calcareous soil. These higher tissue concentrations in ZnO_NP exposed earthworm could have consequences for the persistence and trophic mobility of Zn in terrestrial systems and need to be further investigated to elucidate if there any longer-term risks associated with sustained input of ZnO_NP to soil.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Oligoquetos/química , Suelo/química , Zinc/toxicidad , Zinc/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/química , Disponibilidad Biológica
2.
Sci Rep ; 12(1): 14331, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995928

RESUMEN

We use a national citizen science monitoring scheme to quantify how agricultural intensification affects honeybee diet breadth (number of plant species). To do this we used DNA metabarcoding to identify the plants present in 527 honey samples collected in 2019 across Great Britain. The species richness of forage plants was negatively correlated with arable cropping area, although this was only found early in the year when the abundance of flowering plants was more limited. Within intensively farmed areas, honeybee diets were dominated by Brassica crops (including oilseed rape). We demonstrate how the structure and complexity of honeybee foraging relationships with plants is negatively affected by the area of arable crops surrounding hives. Using information collected from the beekeepers on the incidence of an economically damaging bee disease (Deformed Wing Virus) we found that the occurrence of this disease increased where bees foraged in agricultural land where there was a high use of foliar insecticides. Understanding impacts of land use on resource availability is fundamental to assessing long-term viability of pollinator populations. These findings highlight the importance of supporting temporally timed resources as mitigation strategies to support wider pollinator population viability.


Asunto(s)
Ciencia Ciudadana , Plaguicidas , Animales , Abejas , Productos Agrícolas , Plaguicidas/toxicidad , Polinización , Virus ARN , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...