Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39062586

RESUMEN

Glucagon-like peptide-1 (GLP-1)-based drugs have been approved by the United States Food and Drug Administration (FDA) and are widely used to treat type 2 diabetes mellitus (T2DM) and obesity. More recent developments of unimolecular peptides targeting multiple incretin-related receptors ("multi-agonists"), including the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and the glucagon (Gcg) receptor (GcgR), have emerged with the aim of enhancing drug benefits. In this study, we utilized human and mouse microglial cell lines, HMC3 and IMG, respectively, together with the human neuroblastoma SH-SY5Y cell line as cellular models of neurodegeneration. Using these cell lines, we studied the neuroprotective and anti-inflammatory capacity of several multi-agonists in comparison with a single GLP-1 receptor (GLP-1R) agonist, exendin-4. Our data demonstrate that the two selected GLP-1R/GIPR dual agonists and a GLP-1R/GIPR/GcgR triple agonist not only have neurotrophic and neuroprotective effects but also have anti-neuroinflammatory properties, as indicated by the decreased microglial cyclooxygenase 2 (COX2) expression, nitrite production, and pro-inflammatory cytokine release. In addition, our results indicate that these multi-agonists have the potential to outperform commercially available single GLP-1R agonists in neurodegenerative disease treatment.


Asunto(s)
Antiinflamatorios , Receptor del Péptido 1 Similar al Glucagón , Incretinas , Fármacos Neuroprotectores , Humanos , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Incretinas/farmacología , Ratones , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Línea Celular , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de la Hormona Gastrointestinal/metabolismo , Exenatida/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Línea Celular Tumoral , Péptidos/farmacología , Péptidos/química , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/agonistas
2.
Brain Behav Immun ; 121: 43-55, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971207

RESUMEN

Bacterial peptidoglycan (PGN) fragments are commonly studied in the context of bacterial infections. However, PGN fragments recently gained recognition as signalling molecules from the commensal gut microbiota in the healthy host. Here we focus on the minimal bioactive PGN motif muramyl dipeptide (MDP), found in both Gram-positive and Gram-negative commensal bacteria, which signals through the Nod2 receptor. MDP from the gut microbiota translocates to the brain and is associated with changes in neurodevelopment and behaviour, yet there is limited knowledge about the underlying mechanisms. In this study we demonstrate that physiologically relevant doses of MDP induce rapid changes in microglial gene expression and lead to cytokine and chemokine secretion. In immortalised microglial (IMG) cells, C-C Motif Chemokine Ligand 5 (CCL5/RANTES) expression is acutely sensitive to the lowest physiologically prevalent dose (0.1 µg/ml) of MDP. As CCL5 plays an important role in memory formation and synaptic plasticity, microglial CCL5 might be the missing link in elucidating MDP-induced alterations in synaptic gene expression. We observed that a higher physiological dose of MDP elevates the expression of cytokines TNF-α and IL-1ß, indicating a transition toward a pro-inflammatory phenotype in IMG cells, which was validated in primary microglial cultures. Furthermore, MDP induces the translocation of NF-κB subunit p65 into the nucleus, which is blocked by MAPK p38 inhibitor SB202190, suggesting that an interplay of both the NF-κB and MAPK pathways is responsible for the MDP-specific microglial phenotype. These findings underscore the significance of different MDP levels in shaping microglial function in the CNS and indicate MDP as a potential mediator for early inflammatory processes in the brain. It also positions microglia as an important target in the gut microbiota-brain-axis pathway through PGN signalling.

3.
Ageing Res Rev ; 98: 102343, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38762101

RESUMEN

Glucagon-like peptide-1 (GLP-1) receptor agonist-based drugs (incretin mimetics) have meaningfully impacted current treatment of type 2 diabetes mellitus (T2DM), and their actions on satiety and weight loss have led to their use as an obesity medication. With multiple pleotropic actions beyond their insulinotropic and weight loss ones, including anti-inflammatory and anti-insulin-resistant effects selectively mediated by their receptors present within numerous organs, this drug class offers potential efficacy for an increasing number of systemic and neurological disorders whose current treatment is inadequate. Among these are a host of neurodegenerative disorders that are prevalent in the elderly, such as Parkinson's and Alzheimer's disease, which have bucked previous therapeutic approaches. An increasing preclinical, clinical, and epidemiological literature suggests that select incretin mimetics may provide an effective treatment strategy, but 'which ones' for 'which disorders' and 'when' remain key open questions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Neurodegenerativas , Obesidad , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Animales , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Incretinas/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Fármacos Antiobesidad/uso terapéutico , Fármacos Antiobesidad/farmacología
4.
J Neurochem ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491746

RESUMEN

Dysregulation of synaptic glutamate levels can lead to excitotoxicity such as that observed in stroke, traumatic brain injury, and epilepsy. The role of increased intracellular calcium (Ca2+ ) in the development of excitotoxicity is well established. However, less is known regarding the impact of glutamate on endoplasmic reticulum (ER)-Ca2+ -mediated processes such as proteostasis. To investigate this, we expressed a secreted ER Ca2+ modulated protein (SERCaMP) in primary cortical neurons to monitor exodosis, a phenomenon whereby ER calcium depletion causes the secretion of ER-resident proteins that perform essential functions to the ER and the cell. Activation of glutamatergic receptors (GluRs) led to an increase in SERCaMP secretion indicating that normally ER-resident proteins are being secreted in a manner consistent with ER Ca2+ depletion. Antagonism of ER Ca2+ channels attenuated the effects of glutamate and GluR agonists on SERCaMP release. We also demonstrate that endogenous proteins containing an ER retention/retrieval sequence (ERS) are secreted in response to GluR activation supporting that neuronal activation by glutamate promotes ER exodosis. Ectopic expression of KDEL receptors attenuated the secretion of ERS-containing proteins caused by GluR agonists. Taken together, our data indicate that excessive GluR activation causes disruption of neuronal proteostasis by triggering the secretion of ER-resident proteins through ER Ca2+ depletion and describes a new facet of excitotoxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA