Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(11): 4785-4792, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37220025

RESUMEN

While the performance of metal halide perovskite light-emitting diodes (PeLEDs) has rapidly improved in recent years, their stability remains a bottleneck to commercial realization. Here, we show that the thermal stability of polymer hole-transport layers (HTLs) used in PeLEDs represents an important factor influencing the external quantum efficiency (EQE) roll-off and device lifetime. We demonstrate a reduced EQE roll-off, a higher breakdown current density of approximately 6 A cm-2, a maximum radiance of 760 W sr-1 m-2, and a longer device lifetime for PeLEDs using polymer HTLs with high glass-transition temperatures. Furthermore, for devices driven by nanosecond electrical pulses, a record high radiance of 1.23 MW sr-1 m-2 and an EQE of approximately 1.92% at 14.6 kA cm-2 are achieved. Thermally stable polymer HTLs enable stable operation of PeLEDs that can sustain more than 11.7 million electrical pulses at 1 kA cm-2 before device failure.

2.
Opt Express ; 30(26): 47475-47484, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558675

RESUMEN

Ideal ring resonators are characterized by travelling-wave counter-propagating modes, but in practice travelling waves can only be realized under unidirectional operation, which has proved elusive. Here, we have designed and fabricated a monolithic quantum cascade ring laser coupled to an active waveguide that allows for robust, deterministic and controllable unidirectional operation. Spontaneous emission injection through the active waveguide enables dynamical switching between the clockwise and counterclockwise states of the ring laser with as little as 1.6% modulation of the electrical input. We show that this behavior stems from a perturbation in the bistable dynamics of the ring laser. In addition to switching and bistability, our novel coupler design for quantum cascade ring lasers offers an efficient mechanism for outcoupling and light detection.

3.
Adv Mater ; 33(44): e2104867, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34477263

RESUMEN

While metal-halide perovskite light-emitting diodes (PeLEDs) hold the potential for a new generation of display and lighting technology, their slow operation speed and response time limit their application scope. Here, high-speed PeLEDs driven by nanosecond electrical pulses with a rise time of 1.2 ns are reported with a maximum radiance of approximately 480 kW sr-1  m-2 at 8.3 kA cm-2 , and an external quantum efficiency (EQE) of 1% at approximately 10 kA cm-2 , through improved device configuration designs and material considerations. Enabled by the fast operation of PeLEDs, the temporal response provides access to transient charge carrier dynamics under electrical excitation, revealing several new electroluminescence quenching pathways. Finally, integrated distributed feedback (DFB) gratings are explored, which facilitate more directional light emission with a maximum radiance of approximately 1200 kW sr-1  m-2 at 8.5 kA cm-2 , a more than two-fold enhancement to forward radiation output.

4.
Appl Spectrosc ; 75(6): 706-717, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33474968

RESUMEN

The energy efficiency of heterogeneous catalytic processes may be improved by using mid-infrared light to excite gas-phase reactants during the reaction, since vibrational excitation of molecules has been shown to increase their reactivity at the gas-catalyst interface. A primary challenge for such light-enabled catalysis is the need to ensure close coupling between light-excited molecules and the catalyst throughout the reactor. Thus, it is imperative to understand how to couple infrared light efficiently to molecules near and inside catalytic material. Heterogenous catalysts are often nanoscale metal particles supported on high surface area, porous oxide materials and exhibit feature sizes across multiple scattering regimes with respect to the mid-infrared wavelength. These complex powders make a direct measurement of the scattering properties challenging. Here, we demonstrate that a combination of directional hemispherical measurements along with the in-line transmission measurement allow for a direct measurement of the scattered light signal. We implement this technique to study the scattering behavior of the catalytic support material γ-Al2O3 (with and without metal loading) between 1040 and 1220 cm-1. We first study how both the mean grain size affects the scattering behavior by comparing three different mean grain sizes spanning three orders of magnitude (2, 40, and 900 µm). Furthermore, we study how the addition of metal catalyst nanoparticles, Ru, or Cu, to the support material impacts the light scattering behavior of the powder. We find that the 40 µm grain size scatters the most (up to 97% at 1220 cm-1) and that the addition of metal nanoparticles narrows the scattering angle but does not decrease the scattering efficiency. The strong scattering of the 40 µm grains makes them the most ideal support material of those studied for the given spectrum because of their ability to distribute light within the reactor. Finally, we estimate that less than 100 mW of laser power is needed to cause significant excitation for testing mid-infrared catalysis in a Harrick Praying Mantis diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reactor, a magnitude easily available using commercial mid-infrared lasers. Our work also provides a mid-infrared foundation for a wide range of studies of light-enabled catalysis and can be extended to other wavelengths of light or to study the scattering behavior of other complex powders in other fields, including ceramics, biomaterials, and geology.

5.
Adv Mater ; 32(25): e2000752, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32406172

RESUMEN

The performance of lead-halide perovskite light-emitting diodes (LEDs) has increased rapidly in recent years. However, most reports feature devices operated at relatively small current densities (<500 mA cm-2 ) with moderate radiance (<400 W sr-1 m-2 ). Here, Joule heating and inefficient thermal dissipation are shown to be major obstacles toward high radiance and long lifetime. Several thermal management strategies are proposed in this work, such as doping charge-transport layers, optimizing device geometry, and attaching heat spreaders and sinks. Combining these strategies, high-performance perovskite LEDs are demonstrated with maximum radiance of 2555 W sr-1 m-2 , peak external quantum efficiency (EQE) of 17%, considerably reduced EQE roll-off (EQE > 10% to current densities as high as 2000 mA cm-2 ), and tenfold increase in operational lifetime (when driven at 100 mA cm-2 ). Furthermore, with proper thermal management, a maximum current density of 2.5 kA cm-2 and an EQE of ≈1% at 1 kA cm-2 are shown using electrical pulses, which represents an important milestone toward electrically driven perovskite lasers.

6.
Phys Status Solidi B Basic Solid State Phys ; 253(8): 1494-1497, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27990100

RESUMEN

We present the growth and characterization of ZnCdSe/ZnCdMgSe quantum cascade (QC) heterostructures grown by molecular beam epitaxy (MBE) and designed to operate at 6-8µm. These structures utilize the better-understood ZnCdMgSe with InP lattice matched compositions yielding a bandgap of 2.80 eV as compared to previous work which used ZnCdMgSe compositions with bandgaps at 3.00 eV. Grown structures posses good structural and optical properties evidenced in X-ray diffraction and photoluminescence studies. Fabricated mesa devices show temperature dependent I-V measurements with differential resistance of 3.6 Ω, and a turn on voltage of 11V consistent with design specifications. Electroluminescence was observed in these devices up to room temperature with emission centered at 7.1 µm and line widths of ∼16%(ΔE/E) at 80K. The results show that these are well-behaved electroluminescent structures. Addition of waveguide layers and further improvements in well barrier interfaces are being pursued in efforts to demonstrate lasing.

7.
Opt Express ; 24(22): 25269-25276, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828465

RESUMEN

We demonstrate a novel technique for normal-incident absorption in intersubband infrared detectors by taking advantage of light scattering from the side-walls of a wet-etched mesa. We fabricate 'spiral' and 'hairpin' shaped quantum cascade detector at a peak wavelength of 6.6 µm, and compare their performance with a standard rectangular mesa. We achieve a peak responsivity of 6 mA/W for the spiral and 12 mA/W for the hairpin detectors at normal incidence, comparable to the 8.8 mA/W obtained for the mesa at 45 degree incidence. We obtain a background limited detectivity of about 3×1010 cmHz/W for the spiral and hairpin detectors at 80 K, compared to 3×108 cmHz/W for the standard mesa. This method to achieve normal incidence absorption is wavelength independent, and does not involve complicated fabrication procedures, paving the way for widespread use of intersubband detectors in sensor applications.

8.
Opt Express ; 23(3): 2713-9, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836133

RESUMEN

Quantum Cascade devices with an emission wavelength centered around 5 µm have been shaped into compact, yet long (8 mm and 12 mm) spiral cavities to increase mid-infrared superluminescence (SL) power. Up to ~57 mW of SL power at 250 K is obtained with a Gaussian emission spectrum with a full width at half maximum of 56 cm(-1) and a coherence length of ~107 µm.

9.
Biomed Opt Express ; 5(7): 2397-404, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25071973

RESUMEN

Mid-infrared quantum cascade laser spectroscopy is used to noninvasively predict blood glucose concentrations of three healthy human subjects in vivo. We utilize a hollow-core fiber based optical setup for light delivery and collection along with a broadly tunable quantum cascade laser to obtain spectra from human subjects and use standard chemo-metric techniques (namely partial least squares regression) for prediction analysis. Throughout a glucose concentration range of 80-160 mg/dL, we achieve clinically accurate predictions 84% of the time, on average. This work opens a new path to a noninvasive in vivo glucose sensor that would benefit the lives of hundreds of millions of diabetics worldwide.

10.
Opt Express ; 22(5): 6154-64, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663949

RESUMEN

Non-uniform lateral current distribution in quantum cascade (QC) lasers is investigated, as a result of stimulated-optical-emission-assisted electron transport, the rate of which depends on the local photon density and is comparable to the longitudinal optical (LO) phonon scattering rate. A microscopic model based on rate equations is built to study the self-consistent process of interaction between local electrons and photons in QC lasers. The non-uniform distribution of lateral current and the corresponding spatial hole burning are simulated from this model. Moreover, multi-transverse-mode operation in QC lasers is also investigated.

11.
Biomed Opt Express ; 4(7): 1083-90, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23847734

RESUMEN

Mid-infrared transmission spectroscopy using broadband mid-infrared or Quantum Cascade laser sources is used to predict glucose concentrations of aqueous and serum solutions containing physiologically relevant amounts of glucose (50-400 mg/dL). We employ partial least squares regression to generate a calibration model using a subset of the spectra taken and to predict concentrations from new spectra. Clinically accurate measurements with respect to a Clarke error grid were made for concentrations as low as 30 mg/dL, regardless of background solvent. These results are an important and encouraging step in the work towards developing a noninvasive in vivo glucose sensor in the mid-infrared.

12.
Biomed Opt Express ; 4(4): 520-30, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23577287

RESUMEN

Two mid-infrared light sources, a broadband source from a Fourier Transform Infrared Spectrometer (FTIR) and a pulsed Quantum Cascade (QC) Laser, are used to measure angle-resolved backscattering in vivo from human skin across a broad spectral range. Scattering profiles measured using the FTIR suggest limited penetration of the light into the skin, with most of the light interacting with the stratum corneum layer of the epidermis. Scattering profiles from the QC laser show modulation patterns with angle suggesting interaction with scattering centers in the skin. The scattering is attributed to interaction of the laser light with components such as collagen fibers and capillaries in the dermis layer of the skin.

13.
Opt Express ; 21(25): 31012-8, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24514675

RESUMEN

We investigate the impact of Distributed Bragg Reflectors (DBR), ion-milled directly on top of Fabry-Perot type Quantum Cascade (QC) laser ridges, following fabrication and processing of the devices and observe a more than 10-fold reduction in spectral full-width-half-maximum (FWHM) and a maximum of 20dB side-mode suppression ratio (SMSR), maintained to peak optical power. As predicted by our model, and experimentally verified, there is a "sweet-spot" in terms of grating length, ~200 µm on a 3 mm long laser ridge, and a trade-off between spectral narrowing and output power, set by the grating depth, varied from 1.8 to 2.5 µm.

14.
Opt Express ; 20(20): 22391-7, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23037387

RESUMEN

We report the design, fabrication and characterization of a II-VI Zn(0.51)Cd(0.49)Se / Zn0.45(Cd)0.42(Mg)(0.13)Se-based quantum well infrared photodetector (QWIP) with a bound to quasi-bound transition centered at 8.7 µm. The good growth quality of the epitaxial layers was verified by x-ray diffraction measurements. Absorption and photocurrent measurements yield results consistent with conventional III-V QWIPs. Photocurrent measurements reveal an exponential decrease with temperature. In addition, we also observe more than 4 orders of magnitude increase in photocurrent with applied bias. By compensating the drop in temperature performance with an increase in applied bias, we achieve an operating temperature of up to 140K and a responsivity of 1-10 µA/W.


Asunto(s)
Compuestos de Cadmio/química , Compuestos de Cadmio/efectos de la radiación , Conductometría/instrumentación , Fotometría/instrumentación , Compuestos de Selenio/química , Compuestos de Selenio/efectos de la radiación , Compuestos de Zinc/química , Compuestos de Zinc/efectos de la radiación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Fotones
15.
Opt Express ; 20(3): 2539-47, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22330491

RESUMEN

We investigate the ridge-width dependence of the threshold of Quantum Cascade lasers fabricated by wet and dry etching, respectively. The sloped sidewalls resulting from wet etching affect the threshold in two ways as the ridge gets narrower. First, the transverse modes are deeper in the substrate, hence reducing the optical confinement factor. Second, more important, a non-negligible field exists in the lossy SiO2 insulation layer, as a result of transverse magnetic mode coupling to the surface plamon mode at the insulator/metal surface, which increases the waveguide loss. By contrast, dry etching is anisotropic and leads to waveguides with vertical sidewalls, which avoids the shift of the modes to the substrate layer and coupling to the surface plasmons, resulting in improved threshold compared with wet-etched lasers, e.g., for narrow ridge widths below 20 µm, the threshold of a 14 µm wide λ ≈ 14 µm laser by dry etching is ~60% lower than that of a wet-etched laser of the same width, at 80 K.


Asunto(s)
Rayos Láser , Modelos Teóricos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
16.
Opt Express ; 19(16): 14990-8, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21934860

RESUMEN

All-semiconductor, highly anisotropic metamaterials provide a straightforward path to negative refraction in the mid-infrared. However, their usefulness in applications is restricted by strong frequency dispersion and limited spectral bandwidth. In this work, we show that by stacking multiple metamaterials of varying thickness and doping into one compound metamaterial, bandwidth is increased by 27% over a single-stack metamaterial, and dispersion is reduced.


Asunto(s)
Óptica y Fotónica , Anisotropía , Rayos Infrarrojos , Luz , Ensayo de Materiales , Modelos Estadísticos , Refractometría/métodos , Dispersión de Radiación , Semiconductores , Difracción de Rayos X
17.
Opt Express ; 19(9): 8297-302, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21643080

RESUMEN

We demonstrate high-performance, long-wavelength (λ ≈14 µm) Quantum Cascade (QC) lasers based on a diagonal optical transition and a "two-phonon-continuum" depletion scheme in which the lower laser level is depopulated by resonant longitudinal optical phonon scattering followed by scattering to a lower energy level continuum. A 2.8 mm long QC laser shows a low threshold current density of 2.0 kA/cm2, a peak output power of ~336 mW, and a slope efficiency of 375 mW/A, all at 300 K, with a high characteristic temperature T0 ~310 K over a wide temperature range from 240 K to 390 K.


Asunto(s)
Rayos Láser , Diseño de Equipo , Análisis de Falla de Equipo , Temperatura
18.
Opt Lett ; 35(20): 3324-6, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20967054

RESUMEN

We demonstrate on-chip hybrid integration of chalcogenide glass waveguides and quantum cascade lasers (QCLs). Integration is achieved using an additive solution-casting and molding method to directly form As(2)S(3) strip waveguides on an existing QCL chip. Integrated As(2)S(3) strip waveguides constructed in this manner display strong optical confinement and guiding around 90° bends, with a NA of 0.24 and bend loss of 12.9dB at a 1mm radius (λ=4.8µm).

19.
Opt Express ; 18(18): 19242-8, 2010 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-20940820

RESUMEN

Subwavelength InGaAs/AlInAs microdisk lasers are demonstrated under continuous-wave optical pumping at a heat-sink temperature of 45 K. A 1.49 µm diameter, 209 nm thick microdisk lases in single-mode at a wavelength of 1.53 µm, which is identified as the whispering-gallery mode with the first radial mode number, the fifth azimuthal mode number, and a modal volume of 2.12(λ/n)(3) according to our mode simulation.


Asunto(s)
Técnicas Biosensibles , Óptica y Fotónica , Aluminio/química , Arsénico/química , Galio/química , Calor , Indio/química , Rayos Láser , Luminiscencia , Microscopía Electrónica de Rastreo/métodos , Semiconductores , Temperatura
20.
Nature ; 467(7311): 37-9, 2010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20811446
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...