Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Allergy Clin Immunol Glob ; 3(1): 100195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38187863

RESUMEN

Background: Telazorlimab is a humanized anti-OX40 monoclonal antibody being studied for treatment of T-cell-mediated diseases. Objective: This randomized, placebo-controlled, phase 2b dose-range finding study investigated efficacy, safety, pharmacokinetics, and immunogenicity of telazorlimab in subjects with atopic dermatitis. Methods: In this 2-part study (NCT03568162), adults (≥18 years) with moderate-to-severe disease were randomized to various regimens of subcutaneous telazorlimab or placebo for 16 weeks' blinded treatment, followed by 38 weeks' open-label treatment and 12 weeks' drug-free follow-up. Telazorlimab treatment groups (following a loading dose) in part 1 were 300 mg every 2 weeks; 300 mg every 4 weeks; or 75 mg every 4 weeks. Part 2 evaluated telazorlimab 600 mg every 2 weeks. The primary end point was percentage change from baseline in Eczema Area and Severity Index (EASI) at week 16. Safety assessments included incidence of treatment-emergent adverse events. Results: The study randomized 313 subjects in part 1 and 149 in part 2. At 16 weeks, the least squares mean percentage change from baseline in EASI was significantly greater in subjects receiving telazorlimab 300 mg every 2 weeks (part 1) and 600 mg every 2 weeks (part 2) versus placebo (-54.4% vs -34.2% for part 1 and -59.0% vs -41.8% for part 2, P = .008 for both). Telazorlimab was well tolerated, with similar distribution of adverse events between telazorlimab- and placebo-treated subjects in both part 1 and part 2. Conclusion: Telazorlimab, administered subcutaneously at 300 mg every 2 weeks or 600 mg every 2 weeks following a loading dose, was well tolerated and induced significant and progressive clinical improvement in adults with moderate-to-severe atopic dermatitis.

2.
MAbs ; 11(8): 1464-1478, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31462177

RESUMEN

Heavy chain (Hc) heterodimers represent a majority of bispecific antibodies (bsAbs) under clinical development. Although recent technologies achieve high levels of Hc heterodimerization (HD), traces of homodimer contaminants are often present, and as a consequence robust purification techniques for generating highly pure heterodimers in a single step are needed. Here, we describe two different purification methods that exploit differences in Protein A (PA) or Protein G (PG) avidity between homo- and heterodimers. Differential elution between species was enabled by removing PA or PG binding in one of the Hcs of the bsAb. The PA method allowed the avidity purification of heterodimers based on the VH3 subclass, which naturally binds PA and interferes with separation, by using a combination of IgG3 Fc and a single amino acid change in VH3, N82aS. The PG method relied on a combination of three mutations that completely disrupts PG binding, M428G/N434A in IgG1 Fc and K213V in IgG1 CH1. Both methods achieved a high level of heterodimer purity as single-step techniques without Hc HD (93-98%). Since PA and PG have overlapping binding sites with the neonatal Fc receptor (FcRn), we investigated the effects of our engineering both in vitro and in vivo. Mild to moderate differences in FcRn binding and Fc thermal stability were observed, but these did not significantly change the serum half-lives of engineered control antibodies and heterodimers. The methods are conceptually compatible with various Hc HD platforms such as BEAT® (Bispecific Engagement by Antibodies based on the T cell receptor), in which the PA method has already been successfully implemented.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Monoclonales , Proteínas Bacterianas/química , Fragmentos Fc de Inmunoglobulinas , Proteína Estafilocócica A/química , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/aislamiento & purificación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/aislamiento & purificación
3.
J Biol Chem ; 292(23): 9745-9759, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28450393

RESUMEN

Bispecific antibodies (bsAbs) are of significant importance to the development of novel antibody-based therapies, and heavy chain (Hc) heterodimers represent a major class of bispecific drug candidates. Current technologies for the generation of Hc heterodimers are suboptimal and often suffer from contamination by homodimers posing purification challenges. Here, we introduce a new technology based on biomimicry wherein the protein-protein interfaces of two different immunoglobulin (Ig) constant domain pairs are exchanged in part or fully to design new heterodimeric domains. The method can be applied across Igs to design Fc heterodimers and bsAbs. We investigated interfaces from human IgA CH3, IgD CH3, IgG1 CH3, IgM CH4, T-cell receptor (TCR) α/ß, and TCR γ/δ constant domain pairs, and we found that they successfully drive human IgG1 CH3 or IgM CH4 heterodimerization to levels similar to or above those of reference methods. A comprehensive interface exchange between the TCR α/ß constant domain pair and the IgG1 CH3 homodimer was evidenced by X-ray crystallography and used to engineer examples of bsAbs for cancer therapy. Parental antibody pairs were rapidly reformatted into scalable bsAbs that were free of homodimer traces by combining interface exchange, asymmetric Protein A binding, and the scFv × Fab format. In summary, we successfully built several new CH3- or CH4-based heterodimers that may prove useful for designing new bsAb-based therapeutics, and we anticipate that our approach could be broadly implemented across the Ig constant domain family. To our knowledge, CH4-based heterodimers have not been previously reported.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoglobulina A , Fragmentos Fc de Inmunoglobulinas , Inmunoglobulina G , Inmunoglobulina M , Multimerización de Proteína , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/inmunología , Cristalografía por Rayos X , Humanos , Inmunoglobulina A/química , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inmunoglobulina M/química , Inmunoglobulina M/genética , Inmunoglobulina M/inmunología , Dominios Proteicos , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...