Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Horm Behav ; 161: 105523, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484567

RESUMEN

Although research has shown that pets appear to provide certain types of social support to children, little is known about the physiological bases of these effects, especially in naturalistic contexts. In this study, we investigated the effect of free-form interactions between children (ages 8-10 years) and dogs on salivary cortisol concentrations in both species. We further investigated the role of the child-dog relationship by comparing interactions with the child's pet dog to interactions with an unfamiliar dog or a nonsocial control condition, and modeled associations between survey measures of the human-animal bond and children's physiological responses. In both children and dogs, salivary cortisol decreased from pre- to post-interaction; the effect was strongest for children interacting with an unfamiliar dog (compared to their pet dog) and for the pet dogs (compared to the unfamiliar dog). We found minimal evidence for associations between cortisol output and behaviors coded from video, but children scoring higher on survey measures of the human-animal bond exhibited the greatest reductions in cortisol when interacting with dogs. Self-reported loneliness was not related to cortisol or the human-animal bond, but measures of both loneliness and the human-animal bond were higher among children who participated after the onset of the COVID-19 pandemic, relative to those who participated before the pandemic. This study builds on previous work that investigated potential stress-buffering effects of human-animal interaction during explicit stressors and demonstrates important physiological correlates of naturalistic interactions between children and dogs, similar to those that occur in daily life.


Asunto(s)
Vínculo Humano-Animal , Hidrocortisona , Saliva , Perros , Animales , Niño , Hidrocortisona/metabolismo , Hidrocortisona/análisis , Masculino , Humanos , Femenino , Saliva/química , Saliva/metabolismo , Mascotas , Interacción Humano-Animal , Glucocorticoides/metabolismo , Soledad/psicología , COVID-19
2.
Psychoneuroendocrinology ; 161: 106951, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38194845

RESUMEN

Oxytocin is a pleiotropic neuropeptide that plays roles in biological processes ranging from birth, lactation, and social bonding to immune function, cardiovascular repair, and regulation of appetite. Although measurements of endogenous oxytocin concentrations have been performed for more than 50 years, the ability to measure oxytocin accurately poses notable challenges. One potential solution for overcoming these challenges involves measurement of oxytocin's carrier molecule - neurophysin I (NP-1) - as a surrogate biomarker. NP-1 is secreted in equimolar concentrations with oxytocin but has a longer half-life, circulates in higher concentrations, and can be measured using a sandwich immunoassay. We report experiments that 1) analytically validate a commercially available NP-1 sandwich immunoassay for use with human plasma and urine samples, 2) confirm the specificity of this assay, based on detection of NP-1 in plasma from wild-type but not oxytocin knockout mice, 3) demonstrate that NP-1 concentrations are markedly elevated in late pregnancy, consistent with studies showing substantial increases in plasma oxytocin throughout gestation, and 4) establish strong correlation between NP-1 and plasma oxytocin concentrations when oxytocin is measured in extracted (but not non-extracted) plasma. The NP-1 assay used in this study has strong analytical properties, does not require time-intensive extraction protocols, and the assay itself can be completed in < 2 h (compared to 16-24 h for a competitive oxytocin immunoassay). Our findings suggest that much like copeptin has become a useful surrogate biomarker in studies of vasopressin, measurements of NP-1 have similar potential to advance oxytocin research.


Asunto(s)
Neurofisinas , Oxitocina , Ratones , Animales , Femenino , Embarazo , Humanos , Oxitocina/metabolismo , Neurofisinas/metabolismo , Lactancia , Inmunoensayo , Bioensayo
3.
Behav Genet ; 54(2): 196-211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38091228

RESUMEN

A strong signature of selection in the domestic dog genome is found in a five-megabase region of chromosome six in which four structural variants derived from transposons have previously been associated with human-oriented social behavior, such as attentional bias to social stimuli and social interest in strangers. To explore these genetic associations in more phenotypic detail-as well as their role in training success in a specialized assistance dog program-we genotyped 1001 assistance dogs from Canine Companions for Independence®, including both successful graduates and dogs released from the training program for behaviors incompatible with their working role. We collected phenotypes on each dog using puppy-raiser questionnaires, trainer questionnaires, and both cognitive and behavioral tests. Using Bayesian mixed models, we found strong associations (95% credibility intervals excluding zero) between genotypes and certain behavioral measures, including separation-related problems, aggression when challenged or corrected, and reactivity to other dogs. Furthermore, we found moderate differences in the genotypes of dogs who graduated versus those who did not; insertions in GTF2I showed the strongest association with training success (ß = 0.23, CI95% = - 0.04, 0.49), translating to an odds-ratio of 1.25 for one insertion. Our results provide insight into the role of each of these four transposons in canine sociability and may inform breeding and training practices for working dog organizations. Furthermore, the observed importance of the gene GTF2I supports the emerging consensus that variation in GTF2I genotypes and expression have important consequences for social behavior broadly.


Asunto(s)
Factores de Transcripción TFIII , Síndrome de Williams , Humanos , Perros , Animales , Animales de Servicio , Síndrome de Williams/genética , Síndrome de Williams/psicología , Conducta Animal , Teorema de Bayes , Conducta Social
4.
Learn Behav ; 51(2): 131-134, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36810744

RESUMEN

Here, we address Hansen Wheat et al.'s commentary in this journal in response to Salomons et al. Current Biology, 31(14), 3137-3144.E11, (2021). We conduct additional analyses in response to Hansen Wheat et al.'s two main questions. First, we examine the claim that it was the move to a human home environment which enabled the dog puppies to outperform the wolf puppies in gesture comprehension tasks. We show that the youngest dog puppies who had not yet been individually placed in raisers' homes were still highly skilled, and outperformed similar-aged wolf puppies who had higher levels of human interaction. Second, we address the claim that willingness to approach a stranger can explain the difference between dog and wolf pups' ability to succeed in gesture comprehension tasks. We explain the various controls in the original study that render this explanation insufficient, and demonstrate via model comparison that the covariance of species and temperament also make this parsing impossible. Overall, our additional analyses and considerations support the domestication hypothesis as laid out by Salomons et al. Current Biology, 31(14), 3137-3144.E11, (2021).


Asunto(s)
Lobos , Perros , Animales , Humanos , Lobos/fisiología , Triticum , Domesticación , Gestos
5.
Psychoneuroendocrinology ; 143: 105827, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35714438

RESUMEN

Oxytocin has become a popular analyte in behavioral endocrinology in recent years, due in part to its roles in social behavior, stress physiology, and cognition. Urine samples have the advantage of being non-invasive and minimally disruptive to collect, allowing for oxytocin measurements even in some wild populations. However, methods for urinary oxytocin immunoassay have not been sufficiently optimized and rigorously assessed for their potential limitations. Using samples from oxytocin knockout (KO) and wildtype (WT) mice, we find evidence of considerable interference in unextracted urine samples, with similar distributions of measured oxytocin in both genotypes. Importantly, although this interference can be reduced by a reversed-phase solid-phase extraction (SPE), this common approach is not sufficient for eliminating false-positive signal on three immunoassay kits. To better understand the source of the observed interference, we conducted epitope mapping of the Arbor Assays antibody and assessed its cross-reactivity with known, biologically active fragments of oxytocin. We found considerable cross-reactivity (0.5-52% by-molarity) for three fragments of oxytocin that share the core epitope, with more cross-reactivity for longer fragments. Given the presence of some cross-reactivity for even the tripeptide MIF-1, it is likely that many small protein metabolites might be sufficiently similar to the epitope that at high concentrations they interfere with immunoassays. We present a new mixed-mode cation-exchange SPE method that minimizes interference-with knockout samples measuring below the assay's limit of detection-while effectively retaining oxytocin from the urine of wildtype mice. This method demonstrates good parallelism and spike recovery across multiple species (mice, dogs, sifakas, humans). Our results suggest that immunoassays of urine samples may be particularly susceptible to interference, even when using common extraction protocols, but that this interference can be successfully managed using a novel mixed-mode cation exchange extraction. These findings imply that previous conclusions based on urinary oxytocin measurements-especially those involving unextracted samples-may need to be reassessed.


Asunto(s)
Mapeo Epitopo , Inmunoensayo , Oxitocina , Animales , Epítopos , Inmunoensayo/métodos , Ratones , Ratones Noqueados , Oxitocina/metabolismo , Oxitocina/orina
6.
Psychoneuroendocrinology ; 132: 105368, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34364024

RESUMEN

Oxytocin has garnered much interest due to its role in affective states, social behaviors, and diverse physiological functions. However, approaches for measuring endogenous oxytocin concentrations have generated considerable controversy and debate. Common procedures for measuring oxytocin often produce uncorrelated results, and the detected concentrations frequently vary across two orders of magnitude. These findings have led some researchers to argue that immunoassays of plasma oxytocin may be unreliable and nonspecific, particularly when samples are not first processed using an extraction procedure. Here, we assess the specificity of oxytocin immunoassays using plasma samples from wildtype (WT) and oxytocin knockout (KO) mice. Plasma samples from both genotypes were measured using immunoassay and were measured with or without a solid-phase extraction. Using a commercially available kit from Arbor Assays, we demonstrate that both techniques generate a clear contrast between genotypes, with wildtype samples containing high concentrations of oxytocin (unextracted mean = 468 pg/ml; extracted mean = 381 pg/ml), while knockout samples measured below the lower limit of detection. Analytical validations demonstrated good parallelism and spike recovery for both methods. Furthermore, the same wildtype samples measured with both procedures were highly correlated (r = 0.95), although unextracted samples measured at significantly higher concentrations (p = 2.0 ×10-7, Cohen's d = 2.65). To test the generalizability of these results across immunoassay kits, we performed additional assays with kits from Cayman Chemical and Enzo Life Sciences. The Cayman Chemical kit produced results similar to Arbor Assays with a clean signal differentiating WT and KO plasma, both with and without an extraction step. The Enzo kit also differentiated the genotypes, with correlation between extracted and unextracted samples, but was considerably more susceptible to interference without the extraction, as evidenced by false positive signal in KO plasma samples. The extent to which these results generalize to other species remains unknown and challenging to assess.


Asunto(s)
Inmunoensayo , Oxitocina , Plasma , Animales , Bioensayo , Ratones , Ratones Noqueados , Oxitocina/sangre , Manejo de Especímenes
7.
Curr Biol ; 31(14): 3137-3144.e11, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34256018

RESUMEN

Although we know that dogs evolved from wolves, it remains unclear how domestication affected dog cognition. One hypothesis suggests dog domestication altered social maturation by a process of selecting for an attraction to humans.1-3 Under this account, dogs became more flexible in using inherited skills to cooperatively communicate with a new social partner that was previously feared and expressed these unusual social skills early in development.4-6 Here, we comparedog (n = 44) and wolf (n = 37) puppies, 5-18 weeks old, on a battery of temperament and cognition tasks. We find that dog puppies are more attracted to humans, read human gestures more skillfully, and make more eye contact with humans than wolf puppies. The two species are similarly attracted to familiar objects and perform similarly on non-social measures of memory and inhibitory control. These results are consistent with the idea that domestication enhanced the cooperative-communicative abilities of dogs as selection for attraction to humans altered social maturation.


Asunto(s)
Conducta Animal , Comunicación , Perros , Interacción Humano-Animal , Lobos , Animales , Evolución Biológica , Cognición , Domesticación , Gestos , Humanos
8.
Curr Biol ; 31(14): 3132-3136.e5, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34087106

RESUMEN

Human cognition is believed to be unique in part because of early-emerging social skills for cooperative communication.1 Comparative studies show that at 2.5 years old, children reason about the physical world similarly to other great apes, yet already possess cognitive skills for cooperative communication far exceeding those in our closest primate relatives.2,3 A growing body of research indicates that domestic dogs exhibit functional similarities to human children in their sensitivity to cooperative-communicative acts. From early in development, dogs flexibly respond to diverse forms of cooperative gestures.4,5 Like human children, dogs are sensitive to ostensive signals marking gestures as communicative, as well as contextual factors needed for inferences about these communicative acts.6-8 However, key questions about potential biological bases for these abilities remain untested. To investigate their developmental and genetic origins, we tested 375 8-week-old dog puppies on a battery of social-cognitive measures. We hypothesized that if dogs' skills for cooperating with humans are biologically prepared, then they should emerge robustly in early development, not require extensive socialization or learning, and exhibit heritable variation. Puppies were highly skillful at using diverse human gestures, and we found no evidence that their performance required learning. Critically, over 40% of the variation in dogs' point-following abilities and attention to human faces was attributable to genetic factors. Our results suggest that these social skills in dogs emerge early in development and are under strong genetic control.


Asunto(s)
Comunicación , Perros , Gestos , Interacción Humano-Animal , Animales , Cognición , Perros/genética , Humanos , Percepción Social
9.
Anim Cogn ; 24(2): 311-328, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33113034

RESUMEN

While our understanding of adult dog cognition has grown considerably over the past 20 years, relatively little is known about the ontogeny of dog cognition. To assess the development and longitudinal stability of cognitive traits in dogs, we administered a battery of tasks to 160 candidate assistance dogs at 2 timepoints. The tasks were designed to measure diverse aspects of cognition, ranging from executive function (e.g., inhibitory control, reversal learning, memory) to sensory discrimination (e.g., vision, audition, olfaction) to social interaction with humans. Subjects first participated as 8-10-week-old puppies, and then were retested on the same tasks at ~ 21 months of age. With few exceptions, task performance improved with age, with the largest effects observed for measures of executive function and social gaze. Results also indicated that individual differences were both early emerging and enduring; for example, social attention to humans, use of human communicative signals, independent persistence at a problem, odor discrimination, and inhibitory control all exhibited moderate levels of rank-order stability between the two timepoints. Using multiple regression, we found that young adult performance on many cognitive tasks could be predicted from a set of cognitive measures collected in early development. Our findings contribute to knowledge about changes in dog cognition across early development as well as the origins and developmental stability of individual differences.


Asunto(s)
Cognición , Aprendizaje Inverso , Animales , Perros , Función Ejecutiva , Estudios Longitudinales , Memoria
10.
Integr Comp Biol ; 60(4): 976-990, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32726413

RESUMEN

Given their remarkable phenotypic diversity, dogs present a unique opportunity for investigating the genetic bases of cognitive and behavioral traits. Our previous work demonstrated that genetic relatedness among breeds accounts for a substantial portion of variation in dog cognition. Here, we investigated the genetic architecture of breed differences in cognition, seeking to identify genes that contribute to variation in cognitive phenotypes. To do so, we combined cognitive data from the citizen science project Dognition.com with published breed-average genetic polymorphism data, resulting in a dataset of 1654 individuals with cognitive phenotypes representing 49 breeds. We conducted a breed-average genome-wide association study to identify specific polymorphisms associated with breed differences in inhibitory control, communication, memory, and physical reasoning. We found five single nucleotide polymorphisms (SNPs) that reached genome-wide significance after Bonferroni correction, located in EML1, OR52E2, HS3ST5, a U6 spliceosomal RNA, and a long noncoding RNA. When we combined results across multiple SNPs within the same gene, we identified 188 genes implicated in breed differences in cognition. This gene set included more genes than expected by chance that were (1) differentially expressed in brain tissue and (2) involved in nervous system functions including peripheral nervous system development, Wnt signaling, presynapse assembly, and synaptic vesicle exocytosis. These results advance our understanding of the genetic underpinnings of complex cognitive phenotypes and identify specific genetic variants for further research.


Asunto(s)
Cognición , Estudio de Asociación del Genoma Completo , Animales , Encéfalo , Perros , Genoma , Fenotipo
11.
Anim Behav ; 166: 193-206, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32719570

RESUMEN

To characterize the early ontogeny of dog cognition, we tested 168 domestic dog, Canis familiaris, puppies (97 females, 71 males; mean age = 9.2 weeks) in a novel test battery based on previous tasks developed and employed with adolescent and adult dogs. Our sample consisted of Labrador retrievers, golden retrievers and Labrador × golden retriever crosses from 65 different litters at Canine Companions for Independence, an organization that breeds, trains and places assistance dogs for people with disabilities. Puppies participated in a 3-day cognitive battery that consisted of 14 tasks measuring different cognitive abilities and temperament traits such as executive function (e.g. inhibitory control, reversal learning, working memory), use of social cues, sensory discriminations and reactivity to and recovery from novel situations. At 8-10 weeks of age, and despite minimal experience with humans, puppies reliably used a variety of cooperative-communicative gestures from humans. Puppies accurately remembered the location of hidden food for delays of up to 20 s, and succeeded in a variety of visual, olfactory and auditory discrimination problems. They also showed some skill at executive function tasks requiring inhibitory control and reversal learning, although they scored lower on these tasks than is typical in adulthood. Taken together, our results confirm the early emergence of sensitivity to human communication in dogs and contextualize these skills within a broad array of other cognitive abilities measured at the same stage of ontogeny.

12.
Anim Cogn ; 23(5): 953-964, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32524290

RESUMEN

Trait heritability is necessary for evolution by both natural and artificial selection, yet we know little about the heritability of cognitive traits. Domestic dogs are a valuable study system for questions regarding the evolution of phenotypic diversity due to their extraordinary intraspecific variation. While previous studies have investigated morphological and behavioral variation across dog breeds, few studies have systematically assessed breed differences in cognition. We integrated data from Dognition.com-a citizen science project on dog cognition-with breed-averaged genetic data from published sources to estimate the among-breed heritability of cognitive traits using mixed models. The resulting dataset included 11 cognitive measures for 1508 adult dogs across 36 breeds. A factor analysis yielded four factors interpreted as reflecting inhibitory control, communication, memory, and physical reasoning. Narrow-sense among-breed heritability estimates-reflecting the proportion of cognitive variance attributable to additive genetic variation-revealed that scores on the inhibitory control and communication factors were highly heritable (inhibitory control: h2 = 0.70; communication: h2 = 0.39), while memory and physical reasoning were less heritable (memory: h2 = 0.17; physical reasoning: h2 = 0.21). Although the heritability of inhibitory control is partially explained by body weight, controlling for breed-average weight still yields a high heritability estimate (h2 = 0.50), while other factors are minimally affected. Our results indicate that cognitive phenotypes in dogs covary with breed relatedness and suggest that cognitive traits have strong potential to undergo selection. The highest heritabilities were observed for inhibitory control and communication, both of which are hypothesized to have been altered by domestication.


Asunto(s)
Cruzamiento , Cognición , Animales , Comunicación , Perros , Variación Genética , Fenotipo
13.
Ecol Evol ; 7(15): 5891-5900, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28808552

RESUMEN

Many organisms migrate between distinct habitats, exploiting variable resources while profoundly affecting ecosystem services, disease spread, and human welfare. However, the very characteristics that make migration captivating and significant also make it difficult to study, and we lack a comprehensive understanding of which species migrate and why. Here we show that, among mammals, migration is concentrated within Cetacea and Artiodactyla but also diffusely spread throughout the class (found in 12 of 27 orders). We synthesize the many ecological drivers of round-trip migration into three types of movement-between breeding and foraging sites, between breeding and refuge sites, and continuous tracking of forage/prey-each associated with different traits (body mass, diet, locomotion, and conservation status). Our results provide only partial support for the hypothesis that migration occurs without phylogenetic constraint. Furthermore, our findings suggest that categorizing migration into these three types may aid predictions of migrants' responses to environmental changes.

14.
Mol Ecol ; 25(8): 1838-55, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27112634

RESUMEN

The process of domestication can exert intense trait-targeted selection on genes and regulatory regions. Specifically, rapid shifts in the structure and sequence of genomic regulatory elements could provide an explanation for the extensive, and sometimes extreme, variation in phenotypic traits observed in domesticated species. Here, we explored methylation differences from >24 000 cytosines distributed across the genomes of the domesticated dog (Canis familiaris) and the grey wolf (Canis lupus). PCA and model-based cluster analyses identified two primary groups, domestic vs. wild canids. A scan for significantly differentially methylated sites (DMSs) revealed species-specific patterns at 68 sites after correcting for cell heterogeneity, with weak yet significant hypermethylation typical of purebred dogs when compared to wolves (59% and 58%, P < 0.05, respectively). Additionally, methylation patterns at eight genes significantly deviated from neutrality, with similar trends of hypermethylation in purebred dogs. The majority (>66%) of differentially methylated regions contained or were associated with repetitive elements, indicative of a genotype-mediated trend. However, DMSs were also often linked to functionally relevant genes (e.g. neurotransmitters). Finally, we utilized known genealogical relationships among Yellowstone wolves to survey transmission stability of methylation marks, from which we found a substantial fraction that demonstrated high heritability (both H(2) and h(2 ) > 0.99). These analyses provide a unique epigenetic insight into the molecular consequences of recent selection and radiation of our most ancient domesticated companion, the dog. These findings suggest selection has acted on methylation patterns, providing a new genomic perspective on phenotypic diversification in domesticated species.


Asunto(s)
Metilación de ADN , Elementos Transponibles de ADN , Perros/genética , Domesticación , Lobos/genética , Animales , Evolución Molecular , Patrón de Herencia , Linaje , Polimorfismo Genético , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...