Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fish Dis ; : e13959, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706441

RESUMEN

A better understanding of unique anatomical and functional features of the visual systems of teleost fish could provide key knowledge on how these systems influence the health and survival of these animals in both wild and culture environments. We took a systematic approach to assess some of the visual systems of spotted wolffish (Anarhichas minor), a species of increasing importance in North Atlantic aquaculture initiatives. The lumpfish (Cyclopterus lumpus) was included in these studies in a comparative manner to provide reference. Histology, light and electron microscopy were used to study the spatial distribution and occurrence of cone photoreceptor cells and the nature of the retinal tissues, while immunohistochemistry was used to explore the expression patterns of two photoreceptor markers, XAP-1 and XAP-2, in both species. A marine bacterial infection paradigm in lumpfish was used to assess how host-pathogen responses might impact the expression of these photoreceptor markers in these animals. We define a basic photoreceptor mosaic and present an ultrastructural to macroscopic geographical configuration of the retinal pigment tissues in both animals. Photoreceptor markers XAP-1 and XAP-2 have novel distribution patterns in spotted wolffish and lumpfish retinas, and exogenous pathogenic influences can affect the normal expression pattern of XAP-1 in lumpfish. Live tank-side ophthalmoscopy and spectral domain optical coherence tomography (SD-OCT) revealed that normal cultured spotted wolffish display novel variations in the shape of the retinal tissue. These two complementary imaging findings suggest that spotted wolffish harbour unique ocular features not yet described in marine teleosts and that visual function might involve specific retinal tissue shape dynamics in these animals. Finally, extensive endogenous biofluorescence is present in the retinal tissues of both animals, which raises questions about how these animals might use retinal tissue in novel ways for visual perception and/or communication. This work advances fundamental knowledge on the visual systems of two economically important but now threatened North Atlantic teleosts and provides a basic foundation for further research on the visual systems of these animals in health versus disease settings. This work could also be useful for understanding and optimizing the health and welfare of lumpfish and spotted wolffish in aquaculture towards a one health or integrative perspective.

2.
Dev Comp Immunol ; 156: 105165, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499166

RESUMEN

Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.


Asunto(s)
Enfermedades de los Peces , Perfilación de la Expresión Génica , Riñón Cefálico , Inmunidad Innata , Renibacterium , Transcriptoma , Animales , Riñón Cefálico/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Renibacterium/inmunología , Renibacterium/genética , Inmunidad Innata/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Inmunidad Adaptativa/genética , Peces/inmunología , Peces/microbiología , Enfermedad Crónica , Perciformes/inmunología , Perciformes/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Enfermedades Renales/inmunología , Enfermedades Renales/microbiología , Enfermedades Renales/genética , Enfermedades Renales/veterinaria , Micrococcaceae/genética , Micrococcaceae/inmunología
3.
J Fish Dis ; : e13944, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38523320

RESUMEN

Aeromonas salmonicida, a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish (Cyclopterus lumpus) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A-layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron-regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 104 A. salmonicida cells/dose at 8 weeks-post immunization (wpi). Immunized and non-immunized fish died within 2 weeks post-challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm, mhc-ii and cd4) were down-regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin-based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.

4.
Virulence ; 14(1): 2187025, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36895132

RESUMEN

Active flavins derived from riboflavin (vitamin B2) are essential for life. Bacteria biosynthesize riboflavin or scavenge it through uptake systems, and both mechanisms may be present. Because of riboflavin's critical importance, the redundancy of riboflavin biosynthetic pathway (RBP) genes might be present. Aeromonas salmonicida, the aetiological agent of furunculosis, is a pathogen of freshwater and marine fish, and its riboflavin pathways have not been studied. This study characterized the A. salmonicida riboflavin provision pathways. Homology search and transcriptional orchestration analysis showed that A. salmonicida has a main riboflavin biosynthetic operon that includes ribD, ribE1, ribBA, and ribH genes. Outside the main operon, putative duplicated genes ribA, ribB and ribE, and a ribN riboflavin importer encoding gene, were found. Monocistronic mRNA ribA, ribB and ribE2 encode for their corresponding functional riboflavin biosynthetic enzyme. While the product of ribBA conserved the RibB function, it lacked the RibA function. Likewise, ribN encodes a functional riboflavin importer. Transcriptomics analysis indicated that external riboflavin affected the expression of a relatively small number of genes, including a few involved in iron metabolism. ribB was downregulated in response to external riboflavin, suggesting negative feedback. Deletion of ribA, ribB and ribE1 showed that these genes are required for A. salmonicida riboflavin biosynthesis and virulence in Atlantic lumpfish (Cyclopterus lumpus). A. salmonicida riboflavin auxotrophic attenuated mutants conferred low protection to lumpfish against virulent A. salmonicida. Overall, A. salmonicida has multiple riboflavin endowment forms, and duplicated riboflavin provision genes are critical for A. salmonicida infection.


Asunto(s)
Aeromonas salmonicida , Enfermedades de los Peces , Animales , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Duplicación de Gen , Virulencia , Riboflavina , Peces , Enfermedades de los Peces/genética
5.
Microorganisms ; 10(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36363710

RESUMEN

Lumpfish is utilized as a cleaner fish to biocontrol sealice infestations in Atlantic salmon farms. Aeromonas salmonicida, a Gram-negative facultative intracellular pathogen, is the causative agent of furunculosis in several fish species, including lumpfish. In this study, lumpfish were intraperitoneally injected with different doses of A. salmonicida to calculate the LD50. Samples of blood, head-kidney, spleen, and liver were collected at different time points to determine the infection kinetics. We determined that A. salmonicida LD50 is 102 CFU per dose. We found that the lumpfish head-kidney is the primary target organ of A. salmonicida. Triplicate biological samples were collected from head-kidney, spleen, and liver pre-infection and at 3- and 10-days post-infection for RNA-sequencing. The reference genome-guided transcriptome assembly resulted in 6246 differentially expressed genes. The de novo assembly resulted in 403,204 transcripts, which added 1307 novel genes not identified by the reference genome-guided transcriptome. Differential gene expression and gene ontology enrichment analyses suggested that A. salmonicida induces lethal infection in lumpfish by uncontrolled and detrimental blood coagulation, complement activation, inflammation, DNA damage, suppression of the adaptive immune system, and prevention of cytoskeleton formation.

6.
Front Mol Biosci ; 9: 931548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213116

RESUMEN

We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.

7.
Biology (Basel) ; 11(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36138795

RESUMEN

Marine Gram-positive bacterial pathogens, including Renibacterium salmoninarum, Mycobacterium marinum, Nocardia seriolae, Lactococcus garvieae, and Streptococcus spp. cause economic losses in marine fish aquaculture worldwide. Comprehensive information on these pathogens and their dynamic interactions with their respective fish-host systems are critical to developing effective prophylactic measures and treatments. While much is known about bacterial virulence and fish immune response, it is necessary to synthesize the knowledge in terms of host-pathogen interactions as a centerpiece to establish a crucial connection between the intricate details of marine Gram-positive pathogens and their fish hosts. Therefore, this review provides a holistic view and discusses the different stages of the host-pathogen interactions of marine Gram-positive pathogens. Gram-positive pathogens can invade fish tissues, evade the fish defenses, proliferate in the host system, and modulate the fish immune response. Marine Gram-positive pathogens have a unique set of virulence factors that facilitate adhesion (e.g., adhesins, hemagglutination activity, sortase, and capsules), invasion (e.g., toxins, hemolysins/cytolysins, the type VII secretion system, and immune-suppressive proteins), evasion (e.g., free radical quenching, actin-based motility, and the inhibition of phagolysosomal fusion), and proliferation and survival (e.g., heme utilization and siderophore-mediated iron acquisition systems) in the fish host. After infection, the fish host initiates specific innate and adaptive immune responses according to the extracellular or intracellular mechanism of infection. Although efforts have continued to be made in understanding the complex interplay at the host-pathogen interface, integrated omics-based investigations targeting host-pathogen-marine environment interactions hold promise for future research.

8.
Vaccines (Basel) ; 10(3)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35335104

RESUMEN

Marine finfish aquaculture is affected by diverse infectious diseases, and they commonly occur as co-infection. Some of the most frequent and prevalent Gram-negative bacterial pathogens of the finfish aquaculture include Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritella viscosa. To prevent co-infections in aquaculture, polyvalent or universal vaccines would be ideal. Commercial polyvalent vaccines against some of these pathogens are based on whole inactivated microbes and their efficacy is controversial. Identification of common antigens can contribute to the development of effective universal or polyvalent vaccines. In this study, we identified common and unique antigens of P. salmonis, A. salmonicida, Y. ruckeri, V. anguillarum and M. viscosa based on a reverse vaccinology pipeline. We screened the proteome of several strains using complete available genomes and identified a total of 154 potential antigens, 74 of these identified antigens corresponded to secreted proteins, and 80 corresponded to exposed outer membrane proteins (OMPs). Further analysis revealed the outer membrane antigens TonB-dependent siderophore receptor, OMP assembly factor BamA, the LPS assembly protein LptD and secreted antigens flagellar hook assembly protein FlgD and flagellar basal body rod protein FlgG are present in all pathogens used in this study. Sequence and structural alignment of these antigens showed relatively low percentage sequence identity but good structural homology. Common domains harboring several B-cells and T-cell epitopes binding to major histocompatibility (MHC) class I and II were identified. Selected peptides were evaluated for docking with Atlantic salmon (Salmo salar) and Lumpfish MHC class II. Interaction of common peptide-MHC class II showed good in-silico binding affinities and dissociation constants between -10.3 to -6.5 kcal mol-1 and 5.10 × 10-9 to 9.4 × 10-6 M. This study provided the first list of antigens that can be used for the development of polyvalent or universal vaccines against these Gram-negative bacterial pathogens affecting finfish aquaculture.

9.
Microorganisms ; 10(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35056638

RESUMEN

Aeromonas salmonicida is a global distributed Gram-negative teleost pathogen, affecting mainly salmonids in fresh and marine environments. A. salmonicida strains are classified as typical or atypical depending on their origin of isolation and phenotype. Five subspecies have been described, where A. salmonicida subsp. salmonicida is the only typical subspecies, and the subsp. achromogenes, masoucida, smithia, and pectinolytica are considered atypical. Genomic differences between A. salmonicida subsp. salmonicida isolates and their relationship with the current classification have not been explored. Here, we sequenced and compared the complete closed genomes of four virulent strains to elucidate their molecular diversity and pathogenic evolution using the more accurate genomic information so far. Phenotypes, biochemical, and enzymatic profiles were determined. PacBio and MiSeq sequencing platforms were utilized for genome sequencing. Comparative genomics showed that atypical strains belong to the subsp. salmonicida, with 99.55% ± 0.25% identity with each other, and are closely related to typical strains. The typical strain A. salmonicida J223 is closely related to typical strains, with 99.17% identity with the A. salmonicida A449. Genomic differences between atypical and typical strains are strictly related to insertion sequences (ISs) activity. The absence and presence of genes encoding for virulence factors, transcriptional regulators, and non-coding RNAs are the most significant differences between typical and atypical strains that affect their phenotypes. Plasmidome plays an important role in A. salmonicida virulence and genome plasticity. Here, we determined that typical strains harbor a larger number of plasmids and virulence-related genes that contribute to its acute virulence. In contrast, atypical strains harbor a single, large plasmid and a smaller number of virulence genes, reflected by their less acute virulence and chronic infection. The relationship between phenotype and A. salmonicida subspecies' taxonomy is not evident. Comparative genomic analysis based on completed genomes revealed that the subspecies classification is more of a reflection of the ecological niche occupied by bacteria than their divergences at the genomic level except for their accessory genome.

10.
Front Immunol ; 12: 733266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880856

RESUMEN

Renibacterium salmoninarum is a Gram-positive, intracellular pathogen that causes Bacterial Kidney Disease (BKD) in several fish species in freshwater and seawater. Lumpfish (Cyclopterus lumpus) is utilized as a cleaner fish to biocontrol sea lice infestation in Atlantic salmon (Salmo salar) farms. Atlantic salmon is susceptible to R. salmoninarum, and it can transfer the infection to other fish species. Although BKD outbreaks have not been reported in lumpfish, its susceptibility and immune response to R. salmoninarum is unknown. In this study, we evaluated the susceptibility and immune response of lumpfish to R. salmoninarum infection. Groups of lumpfish were intraperitoneally (i.p.) injected with either R. salmoninarum (1×107, 1×108, or 1×109 cells dose-1) or PBS (control). R. salmoninarum infection kinetics and mortality were followed for 98 days post-infection (dpi). Transcript expression levels of 33 immune-relevant genes were measured in head kidney (n = 6) of fish infected with 1×109 cells/dose and compared to the control at 28 and 98 dpi. Infected lumpfish displayed characteristic clinical signs of BKD. Lumpfish infected with high, medium, and low doses had a survival rate of 65%, 93%, and 95%, respectively. Mortality in the high-dose infected group stabilized after 50 dpi, but R. salmoninarum persisted in the fish tissues until 98 dpi. Cytokines (il1ß, il8a, il8b), pattern recognition receptors (tlr5a), interferon-induced effectors (rsad2, mxa, mxb, mxc), and iron regulation (hamp) and acute phase reactant (saa5) related genes were up-regulated at 28 dpi. In contrast, cell-mediated adaptive immunity-related genes (cd4a, cd4b, ly6g6f, cd8a, cd74) were down-regulated at 28 dpi, revealing the immune suppressive nature of R. salmoninarum. However, significant upregulation of cd74 at 98 dpi suggests induction of cell-mediated immune response. This study showed that R. salmoninarum infected lumpfish in a similar fashion to salmonid fish species and caused a chronic infection, enhancing cell-mediated adaptive immune response.


Asunto(s)
Enfermedades de los Peces/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Enfermedades Renales/inmunología , Perciformes/microbiología , Inmunidad Adaptativa/genética , Animales , Carga Bacteriana , Técnicas Bacteriológicas , Enfermedad Crónica , Susceptibilidad a Enfermedades , Enfermedades de los Peces/microbiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Ontología de Genes , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/microbiología , Riñón Cefálico/inmunología , Riñón Cefálico/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Celular/genética , Enfermedades Renales/genética , Enfermedades Renales/microbiología , Perciformes/genética , Perciformes/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Renibacterium , Especificidad de la Especie , Organismos Libres de Patógenos Específicos
11.
Vaccines (Basel) ; 9(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34451944

RESUMEN

Vibrio anguillarum, a marine bacterial pathogen that causes vibriosis, is a recurrent pathogen of lumpfish (Cyclopterus lumpus). Lumpfish is utilized as a cleaner fish in the Atlantic salmon (Salmo salar) aquaculture in the North Atlantic region because of its ability to visualize and prey on the ectoparasite sea lice (Lepeophtheirus salmonis) on the skin of Atlantic salmon, and its performance in cold environments. Lumpfish immunity is critical for optimal performance and sea lice removal. Oral vaccine delivery at a young age is the desired method for fish immunization because is easy to use, reduces fish stress during immunization, and can be applied on a large scale while the fish are at a young age. However, the efficacy of orally delivered inactivated vaccines is controversial. In this study, we evaluated the effectiveness of a V. anguillarum bacterin orally delivered to cultured lumpfish and contrasted it to an intraperitoneal (i.p.) boost delivery. We bio-encapsulated V. anguillarum bacterin in Artemia salina live-feed and orally immunized lumpfish larvae. Vaccine intake and immune response were evaluated by microscopy and quantitative polymerase chain reaction (qPCR) analysis, respectively. qPCR analyses showed that the oral immunization of lumpfish larvae resulted in a subtle stimulation of canonical immune transcripts such as il8b, il10, igha, ighmc, ighb, ccl19, ccl20, cd8a, cd74, ifng, and lgp2. Nine months after oral immunization, one group was orally boosted, and a second group was both orally and i.p. boosted. Two months after boost immunization, lumpfish were challenged with V. anguillarum (7.8 × 105 CFU dose-1). Orally boosted fish showed a relative percentage of survival (RPS) of 2%. In contrast, the oral and i.p. boosted group showed a RPS of 75.5% (p < 0.0001). V. anguillarum bacterin that had been orally delivered was not effective in lumpfish, which is in contrast to the i.p. delivered bacterin that protected the lumpfish against vibriosis. This suggests that orally administered V. anguillarum bacterin did not reach the deep lymphoid tissues, either in the larvae or juvenile fish, therefore oral immunization was not effective. Oral vaccines that are capable of crossing the epithelium and reach deep lymphoid tissues are required to confer an effective protection to lumpfish against V. anguillarum.

12.
Microorganisms ; 9(4)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921528

RESUMEN

Cunner (Tautogolabrus adspersus) is a cleaner fish being considered for utilized in the North Atlantic salmon (Salmo salar) aquaculture industry to biocontrol sea lice infestations. However, bacterial diseases due to natural infections in wild cunners have yet to be described. This study reports the isolation of Pseudomonas sp. J380 from infected wild cunners and its phenotypic, genomic, and transcriptomic characterization. This Gram-negative motile rod-shaped bacterium showed a mesophilic (4-28 °C) and halotolerant growth. Under iron-limited conditions, Pseudomonas sp. J380 produced pyoverdine-type fluorescent siderophore. Koch's postulates were verified in wild cunners by intraperitoneally (i.p.) injecting Pseudomonas sp. J380 at 4 × 103, 4 × 105, and 4 × 107 colony forming units (CFU)/dose. Host-range and comparative virulence were also investigated in lumpfish and Atlantic salmon i.p. injected with ~106 CFU/dose. Lumpfish were more susceptible compared to cunners, and Atlantic salmon was resistant to Pseudomonas sp. J380 infection. Cunner tissues were heavily colonized by Pseudomonas sp. J380 compared to lumpfish and Atlantic salmon suggesting that it might be an opportunistic pathogen in cunners. The genome of Pseudomonas sp. J380 was 6.26 megabases (Mb) with a guanine-cytosine (GC) content of 59.7%. Biochemical profiles, as well as comparative and phylogenomic analyses, suggested that Pseudomonas sp. J380 belongs to the P. fluorescens species complex. Transcriptome profiling under iron-limited vs. iron-enriched conditions identified 1159 differentially expressed genes (DEGs). Cellular metabolic processes, such as ribosomal and energy production, and protein synthesis, were impeded by iron limitation. In contrast, genes involved in environmental adaptation mechanisms including two-component systems, histidine catabolism, and redox balance were transcriptionally up-regulated. Furthermore, iron limitation triggered the differential expression of genes encoding proteins associated with iron homeostasis. As the first report on a bacterial infection in cunners, the current study provides an overview of a new marine pathogen, Pseudomonas sp. J380.

13.
Microorganisms ; 8(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121102

RESUMEN

Vibrio anguillarum is a Gram-negative marine pathogen causative agent of vibriosis in a wide range of hosts, including invertebrates and teleosts. Lumpfish (Cyclopterus lumpus), a native fish of the North Atlantic Ocean, is utilized as cleaner fish to control sea lice (Lepeophtheirus salmonis) infestations in the Atlantic salmon (Salmo salar) aquaculture industry. V. anguillarum is one of the most frequent bacterial pathogens affecting lumpfish. Here, we described the phenotype and genomic characteristics of V. anguillarum strain J360 isolated from infected cultured lumpfish in Newfoundland, Canada. Koch's postulates determined in naïve lumpfish showed lethal acute vibriosis in lumpfish. The V. anguillarum J360 genome was shown to be composed of two chromosomes and two plasmids with a total genome size of 4.56 Mb with 44.85% G + C content. Phylogenetic and comparative analyses showed that V. anguillarum J360 is closely related to V. anguillarum strain VIB43, isolated in Scotland, with a 99.8% genome identity. Differences in the genomic organization were identified and associated with insertion sequence elements (ISs). Additionally, V. anguillarum J360 does not possess a pJM1-like plasmid, typically present in virulent isolates from the Pacific Ocean, suggesting that acquisition of this extrachromosomal element and the virulence of V. anguillarum J360 or other Atlantic isolates could increase.

14.
Fish Shellfish Immunol ; 104: 557-566, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32592927

RESUMEN

Effective vaccine programs against Aeromonas salmonicida have been identified as a high priority area for the sablefish (Anoplopoma fimbria) aquaculture. In this study, we established an A. salmonicida infection model in sablefish to evaluate the efficacy of commercial vaccines and an autogenous vaccine preparation. Groups of 40 fish were intraperitoneally (ip) injected with different doses of A. salmonicida J410 isolated from infected sablefish to calculate the median lethal dose (LD50). Samples of blood, head kidney, spleen, brain, and liver were also collected at different time points to determine the infection kinetics. The LD50 was estimated as ~3 × 105 CFU/dose. To evaluate the immune protection provided by an autogenous vaccine and two commercial vaccines in a common garden experimental design, 140 fish were PIT-tagged, vaccinated and distributed equally into 4 tanks (35 fish for each group, including a control group). Blood samples were taken every 2 weeks to evaluate IgM titers. At 10 weeks post-immunization, all groups were ip challenged with 100 times the calculated LD50 for A. salmonicida J410. A. salmonicida was detected after 5 days post-infection (dpi) in all collected tissues. At 30 days post-challenge the relative percentage survival (RPS) with respect to the control group was calculated for each vaccine. The RPS for the bacterin mix was 65.22%, for Forte Micro 4® vaccine was 56.52% and for Alpha Ject Micro 4® was 30.43%, and these RPS values were reflected by A. salmonicida tissue colonization levels at 10 days post-challenge. Total IgM titers peaked at 6-8 weeks post-immunization, where the autogenous vaccine group showed the highest IgM titers and these values were consistent with the RPS data. Also, we determined that the A. salmonicida A-layer binds to immunoglobulins F(ab)' in a non-specific fashion, interfering with immune assays and potentially vaccine efficacy. Our results indicate that vaccine design influences sablefish immunity and provide a guide for future sablefish vaccine programs.


Asunto(s)
Enfermedades de los Peces/inmunología , Forunculosis/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunidad Innata , Vacunación/veterinaria , Aeromonas salmonicida/fisiología , Animales , Enfermedades de los Peces/microbiología , Peces , Forunculosis/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Inyecciones Intraperitoneales/veterinaria , Perciformes , Distribución Aleatoria
15.
Fish Shellfish Immunol ; 98: 937-949, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31770640

RESUMEN

Renibacterium salmoninarum is a Gram-positive, intracellular bacterial pathogen that causes Bacterial Kidney Disease (BKD) in Atlantic salmon (Salmo salar). The host transcriptomic response to this immune-suppressive pathogen remains poorly understood. To identify R. salmoninarum-responsive genes, Atlantic salmon were intraperitoneally injected with a low (5 × 105 cells/kg, Low-Rs) or high (5 × 107 cells/kg; High-Rs) dose of formalin-killed R. salmoninarum bacterin or phosphate-buffered saline (PBS control); head kidney samples were collected before and 24 h after injection. Using 44K microarray analysis, we identified 107 and 345 differentially expressed probes in response to R. salmoninarum bacterin (i.e. High-Rs vs. PBS control) by Significance Analysis of Microarrays (SAM) and Rank Products (RP), respectively. Twenty-two microarray-identified genes were subjected to qPCR assays, and 17 genes were confirmed as being significantly responsive to the bacterin. There was an up-regulation in expression of genes playing putative roles as immune receptors and antimicrobial effectors. Genes with putative roles as pathogen recognition (e.g. clec12b and tlr5) or immunoregulatory (e.g. tnfrsf6b and tnfrsf11b) receptors were up-regulated in response to R.salmoninarum bacterin. Also, chemokines and a chemokine receptor showed opposite regulation [up-regulation of effectors (i.e. ccl13 and ccl) and down-regulation of cxcr1] in response to the bacterin. The present study identified and validated novel biomarker genes (e.g. ctsl1, lipe, cldn4, ccny) that can be used to assess Atlantic salmon response to R. salmoninarum, and will be valuable in the development of tools to combat BKD.


Asunto(s)
Vacunas Bacterianas/farmacología , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Grampositivas/veterinaria , Riñón Cefálico/inmunología , Micrococcaceae/inmunología , Salmo salar/inmunología , Transcriptoma/inmunología , Animales , Vacunas Bacterianas/administración & dosificación , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Formaldehído/química , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/prevención & control , Enfermedades Renales/inmunología , Enfermedades Renales/microbiología , Enfermedades Renales/prevención & control , Enfermedades Renales/veterinaria , Renibacterium , Salmo salar/genética , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/farmacología
16.
J Fish Dis ; 42(7): 1057-1064, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31087342

RESUMEN

Lumpfish (Cyclopterus lumpus), a native fish of the North Atlantic Ocean, is utilized as cleaner fish to biocontrol sea lice infestations in Atlantic salmon aquaculture. However, bacterial infections are affecting cleaner fish performance. Vibrio anguillarum, the aetiological agent of vibriosis, is one of the most frequent bacterial infections in lumpfish, and effective vaccine programmes against this pathogen have been identified as a high priority for lumpfish. Vibrogen-2 is a commercial polyvalent bath vaccine that contains formalin-inactivated cultures of V. anguillarum serotypes O1 and O2, and Vibrio ordalii. In this study, we evaluated Vibrogen-2 efficacy in lumpfish against a local isolated V. anguillarum strain. Two groups of 125 lumpfish were bath-immunized, bath-boost-immunized at four weeks post-primary immunization, and intraperitoneally (i.p.) boost-immunized at eight weeks post-primary immunization. The control groups were i.p. mock-immunized with PBS. Twenty-seven weeks post-primary immunization, the fish were i.p. challenged with 10 or 100 times the V. anguillarum J360 LD50 dose. After the challenge, survival was monitored daily, and samples of tissues were collected at ten days post-challenge. Commercial vaccine Vibrogen-2 reduced V. anguillarum tissue colonization and delayed mortality but did not confer immune protection to C. lumpus against the V. anguillarum i.p. challenge.


Asunto(s)
Vacunas Bacterianas/uso terapéutico , Enfermedades de los Peces/prevención & control , Peces/microbiología , Vibriosis/veterinaria , Vibrio/inmunología , Animales , Acuicultura , Vacunas Bacterianas/inmunología , Agentes de Control Biológico , Enfermedades de los Peces/inmunología , Inmersión , Dosificación Letal Mediana , Vacunación/métodos , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/uso terapéutico , Vibriosis/inmunología , Vibriosis/prevención & control
17.
Infect Genet Evol ; 73: 314-321, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31108238

RESUMEN

Aeromonas salmonicida subsp. salmonicida is a Gram-negative, facultative intracellular pathogen of a wide range of freshwater and marine fish species. A. salmonicida is the causative agent of furunculosis, an immunosuppressive disease that typically progresses to septicemia. Several aspects of A. salmonicida pathogenesis has already been described, but fundamental genetic aspects of the psychrophilic lifestyle of this bacterium remain unknown. Reverse transcription quantitative real-time polymerase chain reaction (qPCR) is a precise molecular technique used to detect very slight changes in gene expression. The appropriate choice of reference genes is essential for accurate normalization of qPCR gene expression data. Despite the available abundance of validated reference genes for mesophilic pathogens, a broad list of validated reference genes for A. salmonicida is not available. Here, we evaluated seven A. salmonicida reference genes under different culture conditions, including different growth phases, iron-limited and iron-supplemented conditions, and thermal stress. We determined that hfq maintained the most stable expression, followed by era, recA, rpoB, 16S, fabD, and gapA. The results of this study provided with an expanded list of reliable reference genes for A. salmonicida gene expression studies using qPCR.


Asunto(s)
Aeromonas salmonicida/genética , Expresión Génica/genética , Proteínas Bacterianas/genética , Genes Bacterianos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...