Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Infect Dis ; 134: 39-44, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37201863

RESUMEN

OBJECTIVES: This study estimated the 2022 end-of-season influenza vaccine effectiveness (VE) against severe acute respiratory illness (SARI) hospitalization in Chile, Paraguay, and Uruguay. METHODS: We pooled surveillance data from SARI cases in 18 sentinel surveillance hospitals in Chile (n = 9), Paraguay (n = 2), and Uruguay (n = 7) from March 16-November 30, 2022. VE was estimated using a test-negative design and logistic regression models adjusted for country, age, sex, presence of ≥1 comorbidity, and week of illness onset. VE estimates were stratified by influenza virus type and subtype (when available) and influenza vaccine target population, categorized as children, individuals with comorbidities, and older adults, defined per countries' national immunization policies. RESULTS: Among the 3147 SARI cases, there were 382 (12.1%) influenza test-positive case patients; 328 (85.9%) influenza case patients were in Chile, 33 (8.6%) were in Paraguay, and 21 (5.5%) were in Uruguay. In all countries, the predominant subtype was influenza A(H3N2) (92.6% of influenza cases). Adjusted VE against any influenza-associated SARI hospitalization was 33.8% (95% confidence interval: 15.3%, 48.2%); VE against influenza A(H3N2)-associated SARI hospitalization was 30.4% (95% confidence interval: 10.1%, 46.0%). VE estimates were similar across target populations. CONCLUSION: During the 2022 influenza season, influenza vaccination reduced the odds of hospitalization among those vaccinated by one-third. Health officials should encourage influenza vaccination in accordance with national recommendations.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Niño , Humanos , Anciano , Recién Nacido , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Subtipo H3N2 del Virus de la Influenza A , Estaciones del Año , Paraguay/epidemiología , Uruguay/epidemiología , Chile/epidemiología , Eficacia de las Vacunas , Estudios de Casos y Controles , Vacunación , Virus de la Influenza B
2.
Int J Infect Dis ; 133: 27-30, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086864

RESUMEN

The ongoing H5N1 outbreak in the Americas caused by clade 2.3.4.4 is causing unprecedented impact in poultry and wild birds. In November 2022, a highly pathogenic avian influenza A outbreak was declared in poultry in Ecuador, affecting more than 1.1 million heads of poultry in two farms by February 2023. Phylogenetic analysis shows that the virus clade is 2.3.4.4b, and to the best of our knowledge, this is the first scientific publication reporting this clade in South America.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Humanos , Animales , Gripe Aviar/epidemiología , Aves de Corral , Filogenia , Subtipo H5N1 del Virus de la Influenza A/genética , Ecuador/epidemiología , Brotes de Enfermedades
3.
Arch Virol ; 168(3): 87, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36786897

RESUMEN

A methodological approach based on reverse transcription (RT)-multiplex PCR followed by next-generation sequencing (NGS) was implemented to identify multiple respiratory RNA viruses simultaneously. A convenience sampling from respiratory surveillance and SARS-CoV-2 diagnosis in 2020 and 2021 in Montevideo, Uruguay, was analyzed. The results revealed the cocirculation of SARS-CoV-2 with human rhinovirus (hRV) A, B and C, human respiratory syncytial virus (hRSV) B, influenza A virus, and metapneumovirus B1. SARS-CoV-2 coinfections with hRV or hRSV B and influenza A virus coinfections with hRV C were identified in adults and/or children. This methodology combines the benefits of multiplex genomic amplification with the sensitivity and information provided by NGS. An advantage is that additional viral targets can be incorporated, making it a helpful tool to investigate the cocirculation and coinfections of respiratory viruses in pandemic and post-pandemic contexts.


Asunto(s)
COVID-19 , Coinfección , Virus de la Influenza A , Gripe Humana , Virus ARN , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Niño , Adulto , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Pandemias , ARN , Prueba de COVID-19 , Coinfección/diagnóstico , Coinfección/epidemiología , SARS-CoV-2/genética , Virus ARN/genética , Virus Sincitial Respiratorio Humano/genética , Virus de la Influenza A/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología , Gripe Humana/epidemiología
4.
Virus Res ; 326: 199051, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36706806

RESUMEN

To study the spatial and temporal patterns of Influenza A virus (IAV) is essential for an efficient control of the disease caused by IAV and efficient vaccination programs. However, spatiotemporal patterns of spread as well as genetic lineage circulation of IAV on a countrywide scale have not been clearly determined for many tropical regions of the world. In order to gain insight into these matters, the spatial and temporal patterns of IAV in six different geographic regions of Ecuador, from 2011 to 2021, were determined and the timing and magnitude of IAV outbreaks in these localities investigated. The results of these studies revealed that although Ecuador is a South American country situated in the Equator line, its IAV epidemiology resembles that of temperate Northern Hemisphere countries. Phylogenetic analysis of H1N1pdm09 and H3N2 IAV strains isolated in five different localities of Ecuador revealed that provinces in the south of this country have the largest effective population size by comparison with provinces in the north, suggesting that the southern provinces may be acting as a source of IAV. Co-circulation of different H1N1pdm09 and H3N2 genetic lineages was observed in different geographic regions of Ecuador.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/genética , Filogenia , Subtipo H3N2 del Virus de la Influenza A/genética , Ecuador/epidemiología , Estaciones del Año , Gripe Humana/epidemiología
5.
Gene Rep ; 29: 101703, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36338321

RESUMEN

The genetic variability of SARS-CoV-2 (genus Betacoronavirus, family Coronaviridae) has been scrutinized since its first detection in December 2019. Although the role of structural variants, particularly deletions, in virus evolution is little explored, these genome changes are extremely frequent. They are associated with relevant processes, including immune escape and attenuation. Deletions commonly occur in accessory ORFs and might even lead to the complete loss of one or more ORFs. This scenario poses an interesting question about the origin and spreading of extreme structural rearrangements that persist without compromising virus viability. Here, we analyze the genome of SARS-CoV-2 in late 2021 in Uruguay and identify a Delta lineage (AY.20) that experienced a large deletion (872 nucleotides according to the reference Wuhan strain) that removes the 7a, 7b, and 8 ORFs. Deleted viruses coexist with wild-type (without deletion) AY.20 and AY.43 strains. The Uruguayan deletion is like those identified in Delta strains from Poland and Japan but occurs in a different Delta clade. Besides providing proof of the circulation of this large deletion in America, we infer that the 872-deletion arises by the consecutive occurrence of a 6-nucleotide deletion, characteristic of delta strains, and an 866-nucleotide deletion that arose independently in the AY.20 Uruguayan lineage. The largest deletion occurs adjacent to transcription regulatory sequences needed to synthesize the nested set of subgenomic mRNAs that serve as templates for transcription. Our findings support the role of transcription sequences as a hotspot for copy-choice recombination and highlight the remarkable dynamic of SARS-CoV-2 genomes.

6.
PLoS One ; 17(2): e0263563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176063

RESUMEN

Deletions frequently occur in the six accessory genes of SARS-CoV-2, but most genomes with deletions are sporadic and have limited spreading capability. Here, we analyze deletions in the ORF7a of the N.7 lineage, a unique Uruguayan clade from the Brazilian B.1.1.33 lineage. Thirteen samples collected during the early SARS-CoV-2 wave in Uruguay had deletions in the ORF7a. Complete genomes were obtained by Illumina next-generation sequencing, and deletions were confirmed by Sanger sequencing and capillary electrophoresis. The N.7 lineage includes several individuals with a 12-nucleotide deletion that removes four amino acids of the ORF7a. Notably, four individuals underwent an additional 68-nucleotide novel deletion that locates 44 nucleotides downstream in the terminal region of the same ORF7a. The simultaneous occurrence of the 12 and 68-nucleotide deletions fuses the ORF7a and ORF7b, two contiguous accessory genes that encode transmembrane proteins with immune-modulation activity. The fused ORF retains the signal peptide and the complete Ig-like fold of the 7a protein and the transmembrane domain of the 7b protein, suggesting that the fused protein plays similar functions to original proteins in a single format. Our findings evidence the remarkable dynamics of SARS-CoV-2 and the possibility that single and consecutive deletions occur in accessory genes and promote changes in the genomic organization that help the virus explore genetic variations and select for new, higher fit changes.


Asunto(s)
COVID-19/virología , Linaje de la Célula , Eliminación de Gen , Genoma Viral , Sistemas de Lectura Abierta/genética , SARS-CoV-2/genética , Proteínas Virales/genética , Adulto , Anciano , COVID-19/epidemiología , COVID-19/genética , Niño , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Uruguay/epidemiología
7.
Mem Inst Oswaldo Cruz ; 116: e210275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35019072

RESUMEN

BACKGROUND: Evolutionary changes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include indels in non-structural, structural, and accessory open reading frames (ORFs) or genes. OBJECTIVES: We track indels in accessory ORFs to infer evolutionary gene patterns and epidemiological links between outbreaks. METHODS: Genomes from Coronavirus disease 2019 (COVID-19) case-patients were Illumina sequenced using ARTIC_V3. The assembled genomes were analysed to detect substitutions and indels. FINDINGS: We reported the emergence and spread of a unique 4-nucleotide deletion in the accessory ORF6, an interesting gene with immune modulation activity. The deletion in ORF6 removes one repeat unit of a two 4-nucleotide repeat, which shows that directly repeated sequences in the SARS-CoV-2 genome are associated with indels, even outside the context of extended repeat regions. The 4-nucleotide deletion produces a frameshifting change that results in a protein with two inserted amino acids, increasing the coding information of this accessory ORF. Epidemiological and genomic data indicate that the deletion variant has a single common ancestor and was initially detected in a health care outbreak and later in other COVID-19 cases, establishing a transmission cluster in the Uruguayan population. MAIN CONCLUSIONS: Our findings provide evidence for the origin and spread of deletion variants and emphasise indels' importance in epidemiological studies, including differentiating consecutive outbreaks occurring in the same health facility.


Asunto(s)
COVID-19 , Sistemas de Lectura Abierta , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/virología , Genoma Viral , Humanos , SARS-CoV-2/genética , Eliminación de Secuencia , Uruguay/epidemiología
8.
Microbiol Resour Announc ; 10(21): e0041021, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34042476

RESUMEN

Two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants associated with increased transmission and immune evasion, P.1 and P.2, emerged in Brazil and spread throughout South America. Here, we report genomes corresponding to these variants that were recently detected in Uruguay. These P.1 and P.2 genomes share all substitutions that are characteristic of these variants.

9.
Transbound Emerg Dis ; 68(6): 3075-3082, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33501730

RESUMEN

The analysis of genetic diversity in SARS-CoV-2 is the focus of several studies, providing insights into how the virus emerged and evolves. Most common changes in SARS-CoV-2 are single or point nucleotide substitutions; meanwhile, insertions and deletions (indels) have been identified as a less frequent source of viral genetic variability. Here, we report the emergence of a 12-nucleotide deletion in ORF7a, resulting in a 4-amino acid in-frame deletion. The Δ12 variant was identified in viruses from patients of a single outbreak and represents the first report of this deletion in South American isolates. Phylogenetic analysis revealed that Δ12 strains belong to the lineage B.1.1 and clustered separated from the remaining Uruguayan strains. The ∆12 variant was detected in 14 patients of this outbreak by NGS sequencing and/or two rapid and economic methodologies: Sanger amplicon sequencing and capillary electrophoresis. The presence of strong molecular markers as the deletion described here are useful for tracking outbreaks and reveal a significant aspect of the SARS-CoV-2 evolution on the robustness of the virus to keep its functionality regardless loss of genetic material.


Asunto(s)
COVID-19 , SARS-CoV-2 , Eliminación de Secuencia , COVID-19/virología , Brotes de Enfermedades , Genoma Viral , Humanos , Filogenia , SARS-CoV-2/genética , Uruguay/epidemiología
10.
Mem. Inst. Oswaldo Cruz ; 116: e210275, 2021. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1356485

RESUMEN

BACKGROUND Evolutionary changes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include indels in non-structural, structural, and accessory open reading frames (ORFs) or genes. OBJECTIVES We track indels in accessory ORFs to infer evolutionary gene patterns and epidemiological links between outbreaks. METHODS Genomes from Coronavirus disease 2019 (COVID-19) case-patients were Illumina sequenced using ARTIC_V3. The assembled genomes were analysed to detect substitutions and indels. FINDINGS We reported the emergence and spread of a unique 4-nucleotide deletion in the accessory ORF6, an interesting gene with immune modulation activity. The deletion in ORF6 removes one repeat unit of a two 4-nucleotide repeat, which shows that directly repeated sequences in the SARS-CoV-2 genome are associated with indels, even outside the context of extended repeat regions. The 4-nucleotide deletion produces a frameshifting change that results in a protein with two inserted amino acids, increasing the coding information of this accessory ORF. Epidemiological and genomic data indicate that the deletion variant has a single common ancestor and was initially detected in a health care outbreak and later in other COVID-19 cases, establishing a transmission cluster in the Uruguayan population. MAIN CONCLUSIONS Our findings provide evidence for the origin and spread of deletion variants and emphasise indels' importance in epidemiological studies, including differentiating consecutive outbreaks occurring in the same health facility.

11.
Microorganisms ; 8(4)2020 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325860

RESUMEN

Influenza B viruses (IBV) are an important cause of morbidity and mortality during interpandemic periods in the human population. Two phylogenetically distinct IBV lineages, B/Yamagata and B/Victoria, co-circulate worldwide and they present challenges for vaccine strain selection. Until the present study, there was little information regarding the pattern of the circulating strains of IBV in Uruguay. A subset of positive influenza B samples from influenza-like illness (ILI) outpatients and severe acute respiratory illness (SARI) inpatients detected in sentinel hospitals in Uruguay during 2012-2019 were selected. The sequencing of the hemagglutinin (HA) and neuraminidase (NA) genes showed substitutions at the amino acid level. Phylogenetic analysis reveals the co-circulation of both lineages in almost all seasonal epidemics in Uruguay, and allows recognizing a lineage-level vaccine mismatch in approximately one-third of the seasons studied. The epidemiological results show that the proportion of IBV found in ILI was significantly higher than the observed in SARI cases across different groups of age (9.7% ILI, 3.2% SARI) and patients between 5-14 years constituted the majority (33%) of all influenza B infection (p < 0.05). Interestingly, we found that individuals >25 years were particularly vulnerable to Yamagata lineage infections.

12.
PLoS One ; 15(3): e0227962, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32155152

RESUMEN

OBJECTIVE: Since the 2009 influenza pandemic, Latin American (LA) countries have strengthened their influenza surveillance systems. We analyzed influenza genetic sequence data from the 2017 through 2018 Southern Hemisphere (SH) influenza season from selected LA countries, to map the availability of influenza genetic sequence data from, and to describe, the 2017 through 2018 SH influenza seasons in LA. METHODS: We analyzed influenza A/H1pdm09, A/H3, B/Victoria and B/Yamagata hemagglutinin sequences from clinical samples from 12 National Influenza Centers (NICs) in ten countries (Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Mexico, Paraguay, Peru and Uruguay) with a collection date from epidemiologic week (EW) 18, 2017 through EW 43, 2018. These sequences were generated by the NIC or the WHO Collaborating Center (CC) at the U.S Centers for Disease Control and Prevention, uploaded to the Global Initiative on Sharing All Influenza Data (GISAID) platform, and used for phylogenetic reconstruction. FINDINGS: Influenza hemagglutinin sequences from the participating countries (A/H1pdm09 n = 326, A/H3 n = 636, B n = 433) were highly concordant with the genetic groups of the influenza vaccine-recommended viruses for influenza A/H1pdm09 and influenza B. For influenza A/H3, the concordance was variable. CONCLUSIONS: Considering the constant evolution of influenza viruses, high-quality surveillance data-specifically genetic sequence data, are important to allow public health decision makers to make informed decisions about prevention and control strategies, such as influenza vaccine composition. Countries that conduct influenza genetic sequencing for surveillance in LA should continue to work with the WHO CCs to produce high-quality genetic sequence data and upload those sequences to open-access databases.


Asunto(s)
Evolución Molecular , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Orthomyxoviridae/genética , Pandemias/prevención & control , Conjuntos de Datos como Asunto , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Gripe Humana/microbiología , América Latina/epidemiología , Orthomyxoviridae/inmunología , Orthomyxoviridae/aislamiento & purificación , Filogenia
13.
PLoS One ; 14(9): e0221479, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31490961

RESUMEN

BACKGROUND: Despite having influenza vaccination policies and programs, countries in the Americas underutilize seasonal influenza vaccine, in part because of insufficient evidence about severe influenza burden. We aimed to estimate the annual burden of influenza-associated respiratory hospitalizations in the Americas. METHODS: Thirty-five countries in the Americas with national influenza surveillance were invited to provide monthly laboratory data and hospital discharges for respiratory illness (International Classification of Diseases 10th edition J codes 0-99) during 2010-2015. In three age-strata (<5, 5-64, and ≥65 years), we estimated the influenza-associated hospitalizations rate by multiplying the monthly number of respiratory hospitalizations by the monthly proportion of influenza-positive samples and dividing by the census population. We used random effects meta-analyses to pool age-group specific rates and extrapolated to countries that did not contribute data, using pooled rates stratified by age group and country characteristics found to be associated with rates. RESULTS: Sixteen of 35 countries (46%) contributed primary data to the analyses, representing 79% of the America's population. The average pooled rate of influenza-associated respiratory hospitalization was 90/100,000 population (95% confidence interval 61-132) among children aged <5 years, 21/100,000 population (13-32) among persons aged 5-64 years, and 141/100,000 population (95-211) among persons aged ≥65 years. We estimated the average annual number of influenza-associated respiratory hospitalizations in the Americas to be 772,000 (95% credible interval 716,000-829,000). CONCLUSIONS: Influenza-associated respiratory hospitalizations impose a heavy burden on health systems in the Americas. Countries in the Americas should use this information to justify investments in seasonal influenza vaccination-especially among young children and the elderly.


Asunto(s)
Hospitalización/estadística & datos numéricos , Gripe Humana/complicaciones , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/terapia , Adolescente , Adulto , Anciano , Américas/epidemiología , Análisis de Varianza , Niño , Preescolar , Costos y Análisis de Costo , Femenino , Humanos , Gripe Humana/prevención & control , Masculino , Persona de Mediana Edad , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Estaciones del Año , Cobertura de Vacunación/economía , Cobertura de Vacunación/estadística & datos numéricos , Adulto Joven
14.
Virus Res ; 197: 1-7, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25479596

RESUMEN

Molecular characterization of circulating influenza A viruses (IAV) in all regions of the world is essential to detect mutations potentially involved in increased virulence, anti-viral resistance and immune escape. In order to gain insight into these matters, a phylogenetic analysis of the neuraminidase (NA) gene of 146 pandemic H1N1 (H1N1pdm) influenza A virus strains isolated in Argentina, Brazil, Chile, Paraguay, Peru and Uruguay from 2009 to 2013 was performed. Comparison of vaccine strain A/California/7/2009 included in the influenza vaccine recommended for the Southern hemisphere from 2010 through 2013 influenza seasons and strains isolated in South America revealed several amino acid substitutions. Mapping of these substitutions revealed that most of them are located at the surface of the protein and do not interfere with the active site. 3.4% of the strains enrolled in these studies carried the H275Y substitution that confers resistance to oseltamivir. Strains isolated in South America differ from vaccine in two predicted B-cell epitope regions present at positions 102-103 and 351-352 of the NA protein. Moreover, vaccine and strains isolated in Paraguay differ also in an epitope present at position 229. These differences among strains isolated in South America and vaccine strain suggests that these epitopes may not be present in strains isolated in this region. A potential new N-linked glycosylation site was observed in the NA protein of an H1N1pdm IAV strain isolated in Brazil. The results of these studies revealed several genetic and antigenic differences in the NA of H1N1pdm IAV among vaccine and strains circulating in South America. All these findings contribute to our understanding of the course of genetic and antigenic evolution of H1N1pdm IAV populations circulating in the South American region and, consequently, contribute to the study and selection of future and more appropriate vaccines and anti-viral drugs.


Asunto(s)
Variación Genética , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Neuraminidasa/genética , Filogenia , Proteínas Virales/genética , Sustitución de Aminoácidos , Análisis por Conglomerados , Farmacorresistencia Viral , Epítopos de Linfocito B/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Datos de Secuencia Molecular , ARN Viral/genética , Análisis de Secuencia de ADN , América del Sur/epidemiología
15.
Virol J ; 9: 263, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23134595

RESUMEN

BACKGROUND: Influenza A virus (IAV) is a member of the family Orthomyxoviridae and contains eight segments of a single-stranded RNA genome with negative polarity. The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 IAV strain (H1N1pdm) in Mexico and USA. Understanding the extent and causes of biases in codon usage is essential to the understanding of viral evolution. A comprehensive study to investigate the effect of selection pressure imposed by the human host on the codon usage of an emerging, pandemic IAV strain and the trends in viral codon usage involved over the pandemic time period is much needed. RESULTS: We performed a comprehensive codon usage analysis of 310 IAV strains from the pandemic of 2009. Highly biased codon usage for Ala, Arg, Pro, Thr and Ser were found. Codon usage is strongly influenced by underlying biases in base composition. When correspondence analysis (COA) on relative synonymous codon usage (RSCU) is applied, the distribution of IAV ORFs in the plane defined by the first two major dimensional factors showed that different strains are located at different places, suggesting that IAV codon usage also reflects an evolutionary process. CONCLUSIONS: A general association between codon usage bias, base composition and poor adaptation of the virus to the respective host tRNA pool, suggests that mutational pressure is the main force shaping H1N1 pdm IAV codon usage. A dynamic process is observed in the variation of codon usage of the strains enrolled in these studies. These results suggest a balance of mutational bias and natural selection, which allow the virus to explore and re-adapt its codon usage to different environments. Recoding of IAV taking into account codon bias, base composition and adaptation to host tRNA may provide important clues to develop new and appropriate vaccines.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Adaptación Biológica , Codón , Evolución Molecular , Humanos , Gripe Humana/epidemiología , Mutación , Selección Genética
16.
Virus Res ; 170(1-2): 91-101, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22983300

RESUMEN

The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 influenza A virus strain (H1N1pdm). Understanding the evolution of H1N1pdm populations within the South American region is essential for studying global diversification, emergence, resistance and vaccine efficacy. In order to gain insight into these matters, we have performed a Bayesian coalescent Markov Chain Monte Carlo analysis of hemagglutinin (HA) and neuraminidase (NA) gene sequences of all available and comparable HA and NA sequences obtained from H1N1pdm IAV circulating in the South American region. High evolutionary rates and fast population growths characterize the population dynamics of H1N1pdm strains in this region of the world. A significant contribution of first codon position to the mean evolutionary rate was found for both genes studied, revealing a high contribution of non-synonymous substitutions to the mean substitution rate. In the 178days period covered by these studies, substitutions in all HA epitope regions can be observed. HA substitutions D239G/N and Q310H have been observed only in Brazilian patients. While substitution D239G/N is not particularly associated to a specific genetic lineage, all strains bearing substitution Q310H were assigned to clade 6, suggesting a founder effect. None of the substitutions found in the NA proteins of H1N1pdm strains isolated in South America appears sufficiently close to affect the drug binding pocket for the three NA inhibitor antivirals tested. A more detailed analysis of NA proteins revealed epitope differences among 2010 vaccine and H1N1pdm IAV strains circulating in the South American region.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Pandemias , Sustitución de Aminoácidos , Teorema de Bayes , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Cadenas de Markov , Modelos Moleculares , Método de Montecarlo , Neuraminidasa/química , Neuraminidasa/genética , Filogenia , Conformación Proteica , América del Sur/epidemiología
17.
Arch Virol ; 156(1): 87-94, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20931251

RESUMEN

The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 influenza A virus strain (H1N1pdm). Understanding the evolution of H1N1pdm strains within the South American region is essential for studying global diversification, emergence and resistance, as well as determining vaccine efficacy. In order to gain insight into these matters, phylogenetic analysis was performed using 29 hemagglutinin (HA) gene sequences from H1N1pdm strains isolated in South America. The results of these studies revealed that clade 7 was the dominant H1N1pdm lineage in South America. None of the strains isolated in South America clustered together with the 2010 H1 vaccine strain. Amino acid substitutions P100S, S220T and I338V were found in almost all HAs of South American H1N1pdm strains.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Gripe Humana/virología , Pandemias , Filogenia , Sustitución de Aminoácidos , Antígenos Virales/inmunología , Regulación Viral de la Expresión Génica/fisiología , Variación Genética , Hemaglutininas/química , Hemaglutininas/genética , Hemaglutininas/metabolismo , Humanos , Gripe Humana/prevención & control , Modelos Moleculares , Conformación Proteica , América del Sur/epidemiología
18.
Virol J ; 6: 215, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19961611

RESUMEN

BACKGROUND: A sudden emergence of Influenza A Virus (IAV) infections with a new pandemic H1N1 IAV is taking place since April of 2009. In order to gain insight into the mode of evolution of these new H1N1 strains, we performed a Bayesian coalescent Markov chain Monte Carlo (MCMC) analysis of full-length neuraminidase (NA) gene sequences of 62 H1N1 IAV strains (isolated from March 30th to by July 28th, 2009). RESULTS: The results of these studies revealed that the expansion population growth model was the best to fit the sequence data. A mean of evolutionary change of 7.84 x 10(-3) nucleotide substitutions per site per year (s/s/y) was obtained for the NA gene. A significant contribution of first codon position to this mean rate was observed. Maximum clade credibility trees revealed a rapid diversification of NA genes in different genetic lineages, all of them containing Oseltamivir-resistant viruses of very recent emergence. Mapping of naturally occurring amino acid substitutions in the NA protein from 2009 H1N1 IAV circulating in 62 different patients revealed that substitutions are distributed all around the surface of the molecule, leaving the hydrophobic core and the catalytic site essentially untouched. CONCLUSION: High evolutionary rates and fast population growth have contributed to the initial transmission dynamics of 2009 H1N1 IAV. Naturally occurring substitutions are preferentially located at the protein surface and do not interfere with the NA active site. Antigenic regions relevant for vaccine development can differ from previous vaccine strains and vary among patients.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/enzimología , Gripe Humana/virología , Neuraminidasa/genética , Secuencia de Bases , Evolución Molecular , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Modelos Genéticos , Modelos Moleculares , Neuraminidasa/química , Filogenia , Estructura Terciaria de Proteína
19.
Infect Genet Evol ; 9(2): 229-34, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19095085

RESUMEN

In order to gain insight into the genetic relations among H3N2 Influenza A virus (IAV) circulating in the South American region from 1999 to 2007, to investigate the presence of adamantane-resistant strains in this region, and to establish the genetic relations among that strains and vaccine strains recommended for the Southern hemisphere, 11 haemagglutinin (HA) H3 IAV sequences obtained from Uruguayan patients were aligned with corresponding sequences from 68 H3 IAV strains isolated in South America and 9 H3 IAV vaccine strains. Maximum likelihood phylogenetic tree analysis was performed using the GTR evolutionary model. The results of these studies indicate that multiple clades co-circulate during most influenza seasons in South America. Strikingly, one strain isolated in Uruguay in 2005 and all strains isolated in that country during the 2007 season bear an HA adamantane-resistant polymorphism. No other strain isolated in South America previous to the 2005 season bears that HA characteristic amino acid change. Only vaccine strains recommended for the 2007 season were assigned to the same cluster with all available IAV isolated in South America for that season. Evolution of IAV in this region appears to be shaped by re-introduction of new strains.


Asunto(s)
Adamantano/farmacología , Farmacorresistencia Viral/genética , Gripe Humana/virología , Secuencia de Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Epidemiología Molecular , Datos de Secuencia Molecular , Filogenia , Uruguay
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...