Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(9): e0100523, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37671865

RESUMEN

Oncolytic virus (OV) therapy is a promising virus-based approach against various malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our previous studies demonstrated that human PDAC cell lines are highly variable in their permissiveness to OVs. Mouse PDAC cell lines, which are widely used for in vivo examination of the adaptive immune responses during OV and other cancer therapies, have never been examined systematically for the impact of intertumoral heterogeneity (the differences observed between tumors in different patients) on OV virus efficacy. Here, we examined phenotypically and genotypically three commonly used allograftable mouse PDAC cell lines (C57BL6 genetic background): Panc02 (derived from chemically induced PDAC; also known as Pan02), and two cell lines originated from PDACs developed in two different KPC (KrasG12D, Trp53R172H, and PDX-1-Cre) mouse models. Our study (i) characterized the ability of a widely used attenuated oncolytic vesicular stomatitis virus VSV-ΔM51-GFP to infect, replicate in, and kill mouse PDAC cells; (ii) examined their innate antiviral responses; (iii) compared their permissiveness to a non-attenuated VSV-Mwt-GFP and chemotherapeutic drugs; and (iv) analyzed their karyotype and exome. Mouse PDAC cell lines showed high divergence in their permissiveness to VSV-ΔM51-GFP, which negatively correlated with their abilities to mount innate antiviral responses, while all three cell lines were highly permissive to VSV-Mwt-GFP. No correlation was found between resistance to VSV-ΔM51-GFP and chemotherapy. Also, mouse PDAC cell lines showed high divergence in their karyotype and exome. The exome analysis demonstrated that more VSV-ΔM51-GFP-permissive mouse PDAC cell lines harbor mutations in multiple important antiviral genes, such as TYK2, JAK2, and JAK3. IMPORTANCE Oncolytic virus (OV) therapy is a promising virus-based approach against various malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our previous studies using various human PDAC cell lines demonstrated that they are highly variable in their permissiveness to OVs. In this study, we examined phenotypically and genotypically three commonly used allograftable mouse PDAC cell lines, which are widely used for in vivo examination of the adaptive immune responses during cancer therapies. Mouse PDAC cell lines showed high divergence in their permissiveness to oncolytic vesicular stomatitis virus (VSV), which negatively correlated with their abilities to mount innate antiviral responses. Also, we discovered that more VSV-permissive mouse PDAC cell lines harbor mutations in multiple important antiviral genes, such as TYK2, JAK2, and JAK3. Our study provides essential information about three model mouse PDAC cell lines and proposes a novel platform to study OV-based therapies against different PDACs in immunocompetent mice.


Asunto(s)
Carcinoma Ductal Pancreático , Interferón Tipo I , Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Interferón Tipo I/metabolismo , Virus Oncolíticos/fisiología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Virus de la Estomatitis Vesicular Indiana/fisiología
2.
Mol Ther Oncolytics ; 24: 59-76, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-34977342

RESUMEN

Vesicular stomatitis virus (VSV) is a promising oncolytic virus (OV) against different malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our previous studies have demonstrated that VSV-based OVs are effective against the majority of tested human PDAC cell lines. However, some PDAC cell lines are resistant to VSV. PDAC is one of the deadliest types of human malignancies in part due to intrinsic or acquired chemoresistance. Here, we investigated how acquired chemoresistance impacts the efficacy of VSV-based OV therapy. Using an experimental evolution approach, we generated PDAC cell lines with increased resistance to gemcitabine and examined their responsiveness to oncolytic virotherapy. We found that gemcitabine-resistant PDAC cells become more resistant to VSV. The cross-resistance correlated with upregulated levels of a subset of interferon-stimulated genes, resembling the interferon-related DNA damage resistance signature (IRDS), often associated with resistance of cancer cells to chemotherapy and/or radiation therapy. Analysis of ten different PDAC cell lines showed that four PDAC cell lines most resistant to VSV were also highly resistant to gemcitabine, and they all displayed IRDS-like expression in our previous reports. Our study highlights a possible interaction between two different therapies that should be considered in the future for the development of rational treatment regimens.

3.
Cancers (Basel) ; 13(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803211

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with poor prognosis and a dismal survival rate, expected to become the second leading cause of cancer-related deaths in the United States. Oncolytic virus (OV) is an anticancer approach that utilizes replication-competent viruses to preferentially infect and kill tumor cells. Vesicular stomatitis virus (VSV), one such OV, is already in several phase I clinical trials against different malignancies. VSV-based recombinant viruses are effective OVs against a majority of tested PDAC cell lines. However, some PDAC cell lines are resistant to VSV. Upregulated type I IFN signaling and constitutive expression of a subset of interferon-simulated genes (ISGs) play a major role in such resistance, while other mechanisms, such as inefficient viral attachment and resistance to VSV-mediated apoptosis, also play a role in some PDACs. Several alternative approaches have been shown to break the resistance of PDACs to VSV without compromising VSV oncoselectivity, including (i) combinations of VSV with JAK1/2 inhibitors (such as ruxolitinib); (ii) triple combinations of VSV with ruxolitinib and polycations improving both VSV replication and attachment; (iii) combinations of VSV with chemotherapeutic drugs (such as paclitaxel) arresting cells in the G2/M phase; (iv) arming VSV with p53 transgenes; (v) directed evolution approach producing more effective OVs. The latter study demonstrated impressive long-term genomic stability of complex VSV recombinants encoding large transgenes, supporting further clinical development of VSV as safe therapeutics for PDAC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...