Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958736

RESUMEN

Although the critical velocity (CV) protocol has been used to determine the aerobic capacity in rodents, there is a lack of studies that compare CV with maximal lactate steady state intensity (iMLSS) in mice. As a consequence, their physiological and molecular responses after exercise until exhaustion at CV intensity remain unclear. Thus, we aimed to compare and correlate CV with iMLSS in running mice, following different mathematical models for CV estimation. We also evaluated their physiological responses and muscle MCT1 and MCT4 after running until exhaustion at CV. Thirty C57BL/6J mice were divided into two groups (exercised-E and control-C). Group E was submitted to a CV protocol (4 days), using linear (lin1 and lin2) and hyperbolic (hyp) mathematical models to determine the distance, velocity, and time to exhaustion (tlim) of each predictive CV trial, followed by an MLSS protocol. After a running effort until exhaustion at CV intensity, the mice were immediately euthanized, while group C was euthanized at rest. No differences were observed between iMLSS (21.1 ± 1.1 m.min-1) and CV estimated by lin1 (21.0 ± 0.9 m.min-1, p = 0.415), lin2 (21.3 ± 0.9 m.min-1, p = 0.209), and hyp (20.6 ± 0.9 m.min-1, p = 0.914). According to the results, CV was significantly correlated with iMLSS. After running until exhaustion at CV (tlim = 28.4 ± 8,29 min), group E showed lower concentrations of hepatic and gluteal glycogen than group C, but no difference in the content of MCT1 (p = 0.933) and MCT4 (p = 0.123) in soleus muscle. Significant correlations were not found between MCT1 and MCT4 and tlim at CV intensity. Our results reinforce that CV is a valid and non-invasive protocol to estimate the maximal aerobic capacity in mice and that the content of MCT1 and MCT4 was not decisive in determining the tlim at CV, at least when measured immediately after the running effort.


Asunto(s)
Ácido Láctico , Simportadores , Ratones , Animales , Ratones Endogámicos C57BL , Músculo Esquelético/fisiología , Hígado , Transportadores de Ácidos Monocarboxílicos
2.
Biology (Basel) ; 12(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36829608

RESUMEN

This study aimed to systematically review the literature to examine the effects of inspiratory-muscle warm-up (IMW) on the inspiratory, metabolic, respiratory and performance parameters of a main exercise performed by athletes and healthy and active individuals. Methods: This systematic review included randomized studies in English based on the criteria of the PICOS model. The exclusion criteria adopted were studies that applied inspiratory exercise to: i. promote long-term adaptations through inspiratory training (chronic responses); ii. obtain acute responses to inspiratory load (overload) during and in breaks from physical effort and in an inspiratory-exercise session (acute training effect); iii. evaluate the effects of IMW on participants with cardiorespiratory and/or metabolic disease. Data Sources: PubMed, Embase, MedLine, Scopus, SPORTDiscus and Google Scholar (until 17 January 2023). Results: Thirty-one studies were selected. The performance and respiratory parameters were the most investigated (77% and 74%, respectively). Positive effects of IMW were reported by 88% of the studies that investigated inspiratory parameters and 45% of those that evaluated performance parameters. Conclusions: The analyzed protocols mainly had positive effects on the inspiratory and performance parameters of the physical exercises. These positive effects of IMW are possibly associated with the contractile and biochemical properties of inspiratory muscles.

3.
Aging Cell ; 21(12): e13721, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36199173

RESUMEN

Mitochondrial NAD+ -dependent protein deacetylase Sirtuin3 (SIRT3) has been proposed to mediate calorie restriction (CR)-dependent metabolic regulation and lifespan extension. Here, we investigated the role of SIRT3 in CR-mediated longevity, mitochondrial function, and aerobic fitness. We report that SIRT3 is required for whole-body aerobic capacity but is dispensable for CR-dependent lifespan extension. Under CR, loss of SIRT3 (Sirt3-/- ) yielded a longer overall and maximum lifespan as compared to Sirt3+/+ mice. This unexpected lifespan extension was associated with altered mitochondrial protein acetylation in oxidative metabolic pathways, reduced mitochondrial respiration, and reduced aerobic exercise capacity. Also, Sirt3-/- CR mice exhibit lower spontaneous activity and a trend favoring fatty acid oxidation during the postprandial period. This study shows the uncoupling of lifespan and healthspan parameters (aerobic fitness and spontaneous activity) and provides new insights into SIRT3 function in CR adaptation, fuel utilization, and aging.


Asunto(s)
Restricción Calórica , Longevidad , Sirtuina 3 , Animales , Masculino , Ratones , Acetilación , Envejecimiento/metabolismo , Longevidad/genética , Mitocondrias/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Estrés Oxidativo/genética
4.
Sci Rep ; 12(1): 11626, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804037

RESUMEN

This study aimed to test the agreement of the incremental test's physiological responses between tethered running on a nonmotorized treadmill (NMT) to matched relative intensities while running on a conventional motorized treadmill (MT). Using a within-subject crossover design, nine male recreational runners (age = 22 ± 5 years; height = 175 ± 6 cm; weight = 68.0 ± 16.6 kg) underwent two test sessions: one was an incremental intensity protocol on an MT; the other was on an instrumented NMT. Intensity thresholds at [Formula: see text]O2max, respiratory compensation point (iRCP), and lactate threshold (iLT) were registered for analysis, together with [Formula: see text]̇O2, [Formula: see text]̇E, ƒR, and blood lactate concentration ([Lac]). Comparisons were based on hypothesis testing (Student's T-test), effect sizes (Cohen's d), ICC, and Bland Altman analysis. Statistical significance was accepted at p < 0.05. Attained [Formula: see text]O2max (MT = 52.2 ± 7.3 mL·kg-1·min-1 vs NMT = 50.1 ± 8.1 mL·kg-1·min-1) and [Formula: see text]̇O2 at iRCP (MT = 46.3 ± 7.2 mL·kg-1·min-1 vs NMT = 42.8 ± 9.3 mL·kg-1·min-1) were not different between ergometers (p = 0.15 and 0.13, respectively), with significant ICCs (0.84 and 0.70, respectively) and Pearson's correlations (r = 0.87 and 0.76, respectively). The [Lac] at iLT presented poor agreement between conditions. Significant correlations were found (r between 0.72 and 0.83) for relative power values of i[Formula: see text]O2max (6.56 ± 1.28 W·kg-1), iRCP (4.38 ± 1.50 W·kg-1), and iLT (4.15 ± 1.29 W·kg-1) related to their counterpart obtained on MT. Results show that running on an NMT offers a higher glycolytic demand under the same relative internal load as running on an MT but with a similar aerobic response and correlated intensity determination.


Asunto(s)
Consumo de Oxígeno , Carrera , Adolescente , Adulto , Estudios Cruzados , Prueba de Esfuerzo/métodos , Frecuencia Cardíaca/fisiología , Humanos , Ácido Láctico , Masculino , Consumo de Oxígeno/fisiología , Carrera/fisiología , Adulto Joven
5.
Sci Rep ; 12(1): 11223, 2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780133

RESUMEN

Inspiratory muscle warm-up (IMW) has been used as a resource to enhance exercises and sports performance. However, there is a lack of studies in the literature addressing the effects of different IMW loads (especially in combination with a shorter and applicable protocol) on high-intensity running and recovery phase. Thus, this study aimed to investigate the effects of three different IMW loads using a shorter protocol on mechanical, physiological and muscle oxygenation responses during and after high-intensity running exercise. Sixteen physically active men, randomly performed four trials 30 s all-out run, preceded by the shorter IMW protocol (2 × 15 breaths with a 1-min rest interval between sets, accomplished 2 min before the 30 s all-out run). Here, three IMW load conditions were used: 15%, 40%, and 60% of maximal inspiratory pressure (MIP), plus a control session (CON) without the IMW. The force, velocity and running power were measured (1000 Hz). Two near-infrared spectroscopy (NIRS) devices measured (10 Hz) the muscle's oxygenation responses in biceps brachii (BB) and vastus lateralis (VL). Additionally, heart rate (HR) and blood lactate ([Lac]) were also monitored. IMW loads applied with a shorter protocol promoted a significant increase in mean and minimum running power as well as in peak and minimum force compared to CON. In addition, specific IMW loads led to higher values of peak power, mean velocity (60% of MIP) and mean force (40 and 60% of MIP) in relation to CON. Physiological responses (HR and muscles oxygenation) were not modified by any IMW during exercise, as well as HR and [Lac] in the recovery phase. On the other hand, 40% of MIP presented a higher tissue saturation index (TSI) for BB during recovery phase. In conclusion, the use of different loads of IMW may improve the performance of a physically active individual in a 30 s all-out run, as verified by the increased peak, mean and minimum mechanical values, but not in performance assessed second by second. In addition, 40% of the MIP improves TSI of the BB during the recovery phase, which can indicate greater availability of O2 for lactate clearance.


Asunto(s)
Rendimiento Atlético , Carrera , Ejercicio de Calentamiento , Humanos , Lactatos , Masculino , Músculos Respiratorios/fisiología , Carrera/fisiología , Ejercicio de Calentamiento/fisiología
6.
PLoS One ; 17(3): e0266012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35324999

RESUMEN

This study aimed to compare four constructs from the three-minute all-out test (AO3)-end power (EP), the area above EP (WEP), maximum power (Pmax), and attained [Formula: see text]-to those derived from the classical CP model in tethered running. Seventeen male recreational runners underwent two experiments to test for reliability and agreement of AO3 parameters with those obtained from the classical CP model (Wꞌ and CP), a graded exercise test ([Formula: see text]) and a 30-second all-out test (AO30s; Pmax); all performed on a non-motorized treadmill (NMT). Significance levels were set at p<0.05. There were no significant differences between test-retest for Pmax (p = 0.51), WEP (p = 0.39), and EP (p = 0.64), showing generally close to zero bias. Further, retest ICC were high for Pmax and EP (ICC > 0.86) but moderate for WEP (ICC = 0.69). Pmax showed no difference between AO3 and AO30s (p = 0.18; CV% = 9.5%). EP and WEP disagreed largely with their classical critical power model counterparts (p = 0.05; CV%>32.7% and p = 0.23; CV%>39.7%, respectively), showing greater error than their test-retest reliability. [Formula: see text] from AO3 was not different (p = 0.13) and well related (CV% = 8.4; ICC = 0.87) to the incremental test [Formula: see text]. Under the studied conditions, the agreement of EP and WEP to CP and Wꞌ was not strong enough to assure their use interchangeably. Pmax and [Formula: see text] were closer to their criterion parameters.


Asunto(s)
Consumo de Oxígeno , Carrera , Benchmarking , Prueba de Esfuerzo , Humanos , Masculino , Reproducibilidad de los Resultados
7.
Lab Anim ; 56(4): 344-355, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35062839

RESUMEN

Laboratory rodents spend the entire day housed in standard cages that provide a restricted area for movements and might, therefore, limit physical activity. However, it has not been tested in immature rodents of ages ranging from weaning to adulthood (adolescence period) whether the restricted area per animal does actually reduce physical activity and impact the body composition. We analyzed the spontaneous physical activity and feeding behavior during the adolescence of mice kept in two different housing conditions (standard stocking density (SSD) versus low stocking density (LSD)). We aimed to compare the body composition between SSD and LSD groups before they reached adulthood. Differential housing began at four weeks of age and was maintained for four weeks until euthanasia at eight weeks of age. The SSD group had a floor space of 88 cm2 available per animal, while LSD mice were housed with a floor space of 320 cm2 per animal, increasing the individual radius for movement more than three-fold compared with standard requirements. Mice kept in SSD exhibit lower spontaneous physical activity than mice kept in LSD. Early-life exposure to reduced physical activity in mice housed in SSD resulted in greater visceral fat accumulation before adulthood. An environment enabling/stimulating physical activity should be established for rodents as early as possible. This study will be helpful in showing that mice kept in SSD are early exposed to a reduced physical activity already in the adolescence period. Our findings could raise reflections about the translatability of rodents kept in SSD to healthy active humans.


Asunto(s)
Grasa Intraabdominal , Dietilamida del Ácido Lisérgico , Adulto , Animales , Vivienda para Animales , Humanos , Ratones
8.
Brain Res Bull ; 175: 116-129, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34303768

RESUMEN

BACKGROUND: Oxidation resistance protein 1 (OXR1) is of scientific interest due its role in protecting tissues against oxidative stress, DNA mutations and tumorigenesis, but little is known regarding strategies to increase OXR1 in different tissues. As an improved antioxidant defense may result from a high total amount of physical activity, the present study was designed to determine whether an active lifestyle including aerobic training exercise and spontaneous physical activity (SPA) can increase OXR1. We have built a large cage (LC) that allows animals to move freely, promoting an increase in SPA in comparison to a small cage (SC). METHODS: We examined the effects of aerobic training applied for 8 weeks on SPA and OXR1 of C57BL/6 J mice living in two types of housing (SC and LC). OXR1 protein was studied in hypothalamus, muscle and liver, which were chosen due to their important role in energy and metabolic homeostasis. RESULTS: LC-mice were more active than SC-mice as determined by SPA values. Despite both trained groups exhibiting similar gains in aerobic capacity, only trained mice kept in a large cage (but not for trained mice housed in SC) exhibited high OXR1 in the hypothalamus and liver. Trained mice housed in LC that exhibited an up-regulation of OXR1 also were those who exhibited an energy-expensive metabolism (based on metabolic parameters). CONCLUSIONS: These results suggest that aerobic training associated with a more active lifestyle exerts a protective effect against oxidative damage and may be induced by changes in energy metabolism.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Hígado/metabolismo , Proteínas Mitocondriales/genética , Estrés Oxidativo , Condicionamiento Físico Animal/fisiología , Umbral Anaerobio , Animales , Antioxidantes/metabolismo , Vivienda para Animales , Hipotálamo/patología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/fisiología , Músculo Esquelético/metabolismo
9.
Sci Rep ; 11(1): 11148, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045508

RESUMEN

This study investigated the effects of inspiratory muscle pre-activation (IMPA) on the interactions among the technical-tactical, physical, physiological, and psychophysiological parameters in a simulated judo match, based on the centrality metrics by complex network model. Ten male athletes performed 4 experimental sessions. Firstly, anthropometric measurements, maximal inspiratory pressure (MIP) and global strenght of the inspiratory muscles were determined. In the following days, all athletes performed four-minute video-recorded judo matches, under three conditions: without IMPA (CON), after IMPA at 15% (IMPA15), and at 40% (IMPA40) of MIP using an exerciser device. Blood lactate, heart rate and rating of perceived exertion were monitored, and the technical-tactical parameters during the match were related to offensive actions and the time-motion. Based on the complex network, graphs were constructed for each scenario (CON, IMPA15, and IMPA40) to investigate the Degree and Pagerank centrality metrics. IMPA40 increased the connectivity of the physical and technical-tactical parameters in complex network and highlighted the combat frequency and average combat time in top-five ranked nodes. IMPA15 also favoured the interactions among the psychophysiological, physical, and physiological parameters. Our results suggest the positive effects of the IMPA, indicating this strategy to prepare the organism (IMPA15) and to improve performance (IMPA40) in judo match.


Asunto(s)
Rendimiento Atlético/fisiología , Músculos Respiratorios/fisiología , Atletas , Fuerza de la Mano/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Ácido Láctico/sangre , Masculino , Artes Marciales , Modelos Teóricos , Adulto Joven
10.
Sci Rep ; 11(1): 6414, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742012

RESUMEN

High-intensity interval training (HIIT) is of scientific interest due its role in improving physical fitness, but the effects of HIIT on bone health need be carefully explored. Further, it is necessary to know whether HIIT effects on bone health are dependent on the physical activity levels. This may be experimentally tested since we have built a large cage (LC) that allows animals to move freely, promoting an increase of spontaneous physical activity (SPA) in comparison to a small cage (SC). Thus, we examined the effects of HIIT on biophysical, biomechanical and biochemical parameters of bone tissue of C57BL/6J mice living in cages of two different sizes: small (SC) or large (LC) cages with 1320 cm2 and 4800 cm2 floor space, respectively. Male mice were subdivided into two groups within each housing type: Control (C) and Trained (T). At the end of the interventions, all mice were euthanized to extract the femur bone for biophysical, biomechanical and biochemical analyses. Based a significant interaction from two-way ANOVA, trained mice kept in large cage (but not for trained mice housed in SC) exhibited a reduction of tenacity and displacement at failure in bone. This suggests that long-term HIIT program, in addition with a more active lifestyle correlates with exerts negative effects on the bone of healthy mice. A caution must also be raised about the excessive adoption of physical training, at least regarding bone tissue. On the other hand, increased calcium was found in femur of mice housed in LC. In line with this, LC-C mice were more active (i.e. SPA) than other groups. This implies that an active lifestyle without long-term high intensity physical training seems to play a role in promoting benefits to bone tissue. Our data provides new insights for treatment of osteo-health related disorders.


Asunto(s)
Fémur/química , Fémur/fisiología , Entrenamiento de Intervalos de Alta Intensidad/efectos adversos , Condicionamiento Físico Animal/fisiología , Aptitud Física/fisiología , Animales , Densidad Ósea/fisiología , Calcio/análisis , Vivienda para Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Fósforo/análisis , Conducta Sedentaria , Soporte de Peso/fisiología
11.
PLoS One ; 15(9): e0239876, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32997706

RESUMEN

This study investigated the effect of non-periodized training performed at 80, 100 and 120% of the anaerobic threshold intensity (AnT) and a linear periodized training model adapted for swimming rats on the gene expression of monocarboxylate transporters 1 and 4 (MCT1 and 4, in soleus and gastrocnemius muscles), protein contents, blood biomarkers, tissue glycogen, body mass, and aerobic and anaerobic capacities. Sixty Wistar rats were randomly divided into 6 groups (n = 10 per group): a baseline (BL; euthanized before training period), a control group (GC; not exercised during the training period), three groups exercised at intensities equivalent to 80, 100 and 120% of the AnT (G80, G100 and G120, respectively) at the equal workload and a linear periodized training group (GPE). Each training program lasted 12 weeks subdivided into three periods: basic mesocycle (6 weeks), specific mesocycle (5 weeks) and taper (1 week). Although G80, G100 and G120 groups were submitted to monotony workload (i.e. non-modulation at intensity or volume throughout the training program), rodents were evaluated during the same experimental timepoints as GPE to be able comparisons. Our main results showed that all training programs were capable to minimize the aerobic capacity decrease promoted by age, which were compared to control group. Rats trained in periodization model had reduced levels of lipid blood biomarkers and increased hepatic glycogen stores compared to all other trained groups. At the molecular level, only expressions of MCT1 in the muscle were modified by different training regimens, with MCT1 mRNA increasing in rats trained at lower intensities (G80), and MCT1 protein content showed higher values in non-periodized groups compared to pre-training and GPE. Here, training at different intensities but at same total workload promoted similar adaptations in rats. Nevertheless, our results suggested that periodized training seems to be optimize the physiological responses of rats.


Asunto(s)
Adaptación Fisiológica , Umbral Anaerobio , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Natación/fisiología , Simportadores/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Biomarcadores/sangre , Peso Corporal , Glucógeno/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Simportadores/genética , Regulación hacia Arriba
12.
Front Physiol ; 9: 843, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30034346

RESUMEN

Sports and exercise today are popular for both amateurs and athletes. However, we continue to seek the best ways to analyze best athlete performances and develop specific tools that may help scientists and people in general to analyze athletic achievement. Standard statistics and cause-and-effect research, when applied in isolation, typically do not answer most scientific questions. The human body is a complex holistic system exchanging data during activities, as has been shown in the emerging field of network physiology. However, the literature lacks studies regarding sports performance, running, exercise, and more specifically, sprinter athletes analyzed mathematically through complex network modeling. Here, we propose complex models to jointly analyze distinct tests and variables from track sprinter athletes in an untargeted manner. Through complex propositions, we have incorporated mathematical and computational modeling to analyze anthropometric, biomechanics, and physiological interactions in running exercise conditions. Exercise testing associated with complex network and mathematical outputs make it possible to identify which responses may be critical during running. The physiological basis, aerobic, and biomechanics variables together may play a crucial role in performance. Coaches, trainers, and runners can focus on improving specific outputs that together help toward individuals' goals. Moreover, our type of analysis can inspire the study and analysis of other complex sport scenarios.

13.
Front Physiol ; 9: 1839, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618844

RESUMEN

To assess the physical capacity of rats in forced swim tests, the animal should perform a continuous activity (CON) at the surface to avoid apnea. Bobbing movement (BOB), vigorous paddling known as climbing (CLI), and diving activity (DIV) are inadequate swimming patterns known to increase the exercise intensity variability, impairing the test reliability. Thus, the exercise work accomplished and related physiological variables, such as the blood lactate concentration, may be unreproducible in forced swim. This study aimed to verify the exercise work reproducibility in rats with a 30-min test-retest at maximal lactate steady state (MLSS) intensity using a tethered-swimming apparatus that analyzes swimming patterns by the direct measurement of swimming force. Additionally, it was determined the swimming force and duration of CON, BOB, CLI, and DIV at physiologically different exercise-intensities. The swimming force at MLSS (n = 64) was 38 ± 7 gf.Kg-1, while the blood lactate concentration was 4.2 ± 1.6 mmol.L-1. In the test-retest (N = 23), swimming force (36.6 ± 7 gf.Kg-1 vs. 36.4 ± 7 gf.Kg-1) and blood lactate concentration (4.7 ± 1.7 mmol.L-1 vs. 4.2 ± 1.7 mmol.l-1) were similar, but only the swimming force was highly correlated (0.90 and 0.31). Although it was not statistically different, the swimming force for CON tends to be slightly lower than CLI and slightly higher than BOB independently of exercise-intensity. The CON pattern predominates (∼52.8 ± 18%) at intensities below and of MLSS but BOB was the swimming pattern more often observed above MLSS-intensity (52.6 ± 18%). The present study used a tethered swimming apparatus to investigate the reliability of forced swim tests for exercise testing in rats and better understand the swimming patterns when determining the MLSS, but the results can be extended to any study that rely on forced swim for exercise testing and training. The result suggests that, at least at intensities of physiological stability, the exercise work accomplished by rats is reproducible in forced swim, but the blood lactate concentration seems to be affected by other factors, such as the apnea and stress caused by the possibility of drowning, besides the exercise-intensity.

14.
J Sports Med Phys Fitness ; 58(4): 407-413, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27792222

RESUMEN

BACKGROUND: Several methods of aerobic capacity evaluation have been applied to assess and prescribe the training sessions in swimming. However, most protocols either show exhaustive characteristics, triggering transitory stress period or several visits, influencing the session's organization. Thus, the purpose was to validate a double-bout exercise protocol for non-exhaustive aerobic capacity determination of swimmers. METHODS: Twelve swimmers were submitted to non-exhaustive and Maximal Lactate Steady State (MLSS) protocols. Non-exhaustive double effort test (NEDE) was performed into 4 sessions with randomized intensities 60-80 s/100 m. Sessions were divided in two bouts with same intensity, duration (180 s) and interval (90 s). Linear interpolation of heart rate difference (∆HR) and lactate difference (∆Lac) enabled determination of a "null" delta. NEDE and MLSS were performed for determination of reproducibility and validity respectively. RESULTS: The velocity (s/100 m) measured by Δ HR (test 75.16±0.84; retest 74.81±0.75) and ΔLac (test 75.08±0.87; retest 75.14±0.81) did not differ from MLSS (74.00±1.20). Significant correlation was found between test and retest for HR (P=0.001), Lac concentration (P=0.001) and MLSS (HR test P=0.0001; HR retest P=0.0001; Lac test P=0.002; Lac retest P=0.0001). CONCLUSIONS: In conclusion, non-exhaustive double test evaluated by ΔHR and ΔLac was reproducible and valid to determine the aerobic capacity in swimming.


Asunto(s)
Prueba de Esfuerzo/métodos , Natación/fisiología , Adulto , Aerobiosis , Tolerancia al Ejercicio , Fatiga/metabolismo , Femenino , Frecuencia Cardíaca , Humanos , Ácido Láctico/metabolismo , Masculino , Consumo de Oxígeno , Reproducibilidad de los Resultados , Adulto Joven
15.
Front Physiol ; 8: 389, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28642717

RESUMEN

In 1993, Uwe Tegtbur proposed a useful physiological protocol named the lactate minimum test (LMT). This test consists of three distinct phases. Firstly, subjects must perform high intensity efforts to induce hyperlactatemia (phase 1). Subsequently, 8 min of recovery are allowed for transposition of lactate from myocytes (for instance) to the bloodstream (phase 2). Right after the recovery, subjects are submitted to an incremental test until exhaustion (phase 3). The blood lactate concentration is expected to fall during the first stages of the incremental test and as the intensity increases in subsequent stages, to rise again forming a "U" shaped blood lactate kinetic. The minimum point of this curve, named the lactate minimum intensity (LMI), provides an estimation of the intensity that represents the balance between the appearance and clearance of arterial blood lactate, known as the maximal lactate steady state intensity (iMLSS). Furthermore, in addition to the iMLSS estimation, studies have also determined anaerobic parameters (e.g., peak, mean, and minimum force/power) during phase 1 and also the maximum oxygen consumption in phase 3; therefore, the LMT is considered a robust physiological protocol. Although, encouraging reports have been published in both human and animal models, there are still some controversies regarding three main factors: (1) the influence of methodological aspects on the LMT parameters; (2) LMT effectiveness for monitoring training effects; and (3) the LMI as a valid iMLSS estimator. Therefore, the aim of this review is to provide a balanced discussion between scientific evidence of the aforementioned issues, and insights for future investigations are suggested. In summary, further analyses is necessary to determine whether these factors are worthy, since the LMT is relevant in several contexts of health sciences.

16.
Wilderness Environ Med ; 28(3): 239-245, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28629959

RESUMEN

Ultramarathon races are fairly demanding and impose substantial physiological stress on healthy athletes. These competitions may thus be considerably more challenging for individuals with diabetes. This case study aims to describe glycemic control, muscle damage, inflammation, and renal function in 3 athletes with type 1 diabetes during a successful performance in a relay ultramarathon. The team completed the race in 29 hours and 28 minutes, earning third place. The total distance covered by each athlete was 68.7, 84.5, and 65.1 km. Most blood glucose levels showed that athletes were in a zone where it was safe to exercise (90-250 mg/dL or 5.0-13.9 mmol/L). Creatine kinase, lactate dehydrogenase, and aspartate aminotransferase serum levels increased 1.2- to 50.7-fold prerace to postrace, and were higher than the reference ranges for all the athletes postrace. Blood leukocytes, neutrophils, and serum C-reactive protein (CRP) increased 1.6- to 52-fold prerace to postrace and were higher than the reference ranges for 2 athletes after the race. Serum creatinine increased 1.2-fold prerace to postrace for all the athletes but did not meet the risk criteria for acute kidney injury. In conclusion, our main findings show evidence of satisfactory glycemic control in athletes with type 1 diabetes during a relay ultramarathon. Moreover, elevation of muscle damage and inflammatory biomarkers occurred without affecting renal function and challenging the maintenance of blood glucose among athletes. These findings are novel and provide an initial understanding of the physiological responses in athletes with type 1 diabetes during ultramarathon races.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Tipo 1/fisiopatología , Inflamación/fisiopatología , Riñón/fisiología , Músculo Esquelético/fisiopatología , Resistencia Física , Carrera , Adulto , Atletas , Diabetes Mellitus Tipo 1/complicaciones , Humanos , Masculino
17.
Int J Sports Physiol Perform ; 12(7): 864-871, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27918656

RESUMEN

BACKGROUND: Among other aspects, aerobic fitness is indispensable for performance in slalom canoe. PURPOSE: To propose the maximal-lactate steady-state (MLSS) and critical-force (CF) tests using a tethered canoe system as new strategies for aerobic evaluation in elite slalom kayakers. In addition, the relationship between the aerobic parameters from these tests and the kayakers' performances was studied. METHODS: Twelve male elite slalom kayakers from the Brazilian national team participated in this study. All tests were conducted using a tethered canoe system to obtain the force records. The CF test was applied on 4 d and analyzed by hyperbolic (CFhyper) and linear (CFlin) mathematical models. The MLSS intensity (MLSSint) was obtained by three 30-min continuous tests. The time of a simulated race was considered the performance index. RESULTS: No difference (P < .05) between CFhyper (65.9 ± 1.6 N) and MLSSint (60.3 ± 2.5 N) was observed; however, CFlin (71.1 ± 1.7 N) was higher than MLSSint. An inverse and significant correlation was obtained between MLSSint and performance (r = -.67, P < .05). CONCLUSION: In summary, MLSS and CF tests on a tethered canoe system may be used for aerobic assessment of elite slalom kayakers. In addition, CFhyper may be used as an alternative low-cost and noninvasive method to estimate MLSSint, which is related with slalom kayakers' performance.


Asunto(s)
Umbral Anaerobio , Rendimiento Atlético , Metabolismo Energético , Prueba de Esfuerzo/métodos , Deportes Acuáticos , Adolescente , Atletas , Brasil , Humanos , Ácido Láctico/sangre , Masculino , Modelos Teóricos , Adulto Joven
18.
Front Physiol ; 7: 505, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27840611

RESUMEN

The purpose of the study was to investigate the effects of short and long term High-Intensity Interval Training (HIIT) on anaerobic and aerobic performance, creatinine, uric acid, urea, creatine kinase, lactate dehydrogenase, catalase, superoxide dismutase, testosterone, corticosterone, and glycogen concentration (liver, soleus, and gastrocnemius). The Wistar rats were separated in two groups: HIIT and sedentary/control (CT). The lactate minimum (LM) was used to evaluate the aerobic and anaerobic performance (AP) (baseline, 6, and 12 weeks). The lactate peak determination consisted of two swim bouts at 13% of body weight (bw): (1) 30 s of effort; (2) 30 s of passive recovery; (3) exercise until exhaustion (AP). Tethered loads equivalent to 3.5, 4.0, 4.5, 5.0, 5.5, and 6.5% bw were performed in incremental phase. The aerobic capacity in HIIT group increased after 12 weeks (5.2 ± 0.2% bw) in relation to baseline (4.4 ± 0.2% bw), but not after 6 weeks (4.5 ± 0.3% bw). The exhaustion time in HIIT group showed higher values than CT after 6 (HIIT = 58 ± 5 s; CT = 40 ± 7 s) and 12 weeks (HIIT = 62 ± 7 s; CT = 49 ± 3 s). Glycogen (mg/100 mg) increased in gastrocnemius for HIIT group after 6 weeks (0.757 ± 0.076) and 12 weeks (1.014 ± 0.157) in comparison to baseline (0.358 ± 0.024). In soleus, the HIIT increased glycogen after 6 weeks (0.738 ± 0.057) and 12 weeks (0.709 ± 0.085) in comparison to baseline (0.417 ± 0.035). The glycogen in liver increased after HIIT 12 weeks (4.079 ± 0.319) in relation to baseline (2.400 ± 0.416). The corticosterone (ng/mL) in HIIT increased after 6 weeks (529.0 ± 30.5) and reduced after 12 weeks (153.6 ± 14.5) in comparison to baseline (370.0 ± 18.3). In conclusion, long term HIIT enhanced the aerobic capacity, but short term was not enough to cause aerobic adaptations. The anaerobic performance increased in HIIT short and long term compared with CT, without differences between HIIT short and long term. Furthermore, the glycogen super-compensation increased after short and long term HIIT in comparison to baseline and CT group. The corticosterone increased after 6 weeks, but reduces after 12 weeks. No significant alterations were observed in urea, uric acid, testosterone, catalase, superoxide dismutase, sulfhydryl groups, and creatine kinase in HIIT group in relation to baseline and CT.

19.
Front Physiol ; 7: 132, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148071

RESUMEN

Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA). Because every movement in daily life (i.e., SPA) is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT) 1 and 4 in soleus (oxidative) and white gastrocnemius (glycolytic) muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT). Sixty-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co) in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr) in which rats swam for 40 min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT). We propose an approach to combat the decline of SPA of rats in their home cages. This new finding is worth for scientists who work with animal models to study the protective effects of exercise.

20.
J Strength Cond Res ; 29(1): 238-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24979061

RESUMEN

The main aim of this investigation was to verify the relationship of the variables measured during a 3-minute all-out test with aerobic (i.e., peak oxygen uptake [(Equation is included in full-text article.)] and intensity corresponding to the lactate minimum [LMI]) and anaerobic parameters (i.e., anaerobic work) measured during a 400-m maximal performance. To measure force continually and to avoid the possible influences caused by turns, the 3-minute all-out effort was performed in tethered swimming. Thirty swimmers performed the following tests: (a) a 3-minute all-out tethered swimming test to determine the final force (equivalent to critical force: CF3-MIN) and the work performed above CF3-MIN (W'3-MIN), (b) a LMI protocol to determine the LMI during front crawl swimming, and (c) a 400-m maximal test to determine the (Equation is included in full-text article.)and total anaerobic contribution (WANA). Correlations between the variables were tested using the Pearson's correlation test (p ≤ 0.05). CF3-MIN (73.9 ± 13.2 N) presented a high correlation with the LMI (1.33 ± 0.08 m·s; p = 0.01) and (Equation is included in full-text article.)(4.5 ± 1.2 L·min; p = 0.01). However, the W'3-MIN (1,943.2 ± 719.2 N·s) was only moderately correlated with LMI (p = 0.02) and (Equation is included in full-text article.)(p = 0.01). In summary, CF3-MIN determined during the 3-minute all-out effort is associated with oxidative metabolism and can be used to estimate the aerobic capacity of swimmers. In contrast, the anaerobic component of this model (W'3-MIN) is not correlated with WANA.


Asunto(s)
Umbral Anaerobio/fisiología , Rendimiento Atlético/fisiología , Natación/fisiología , Adulto , Tolerancia al Ejercicio , Humanos , Modelos Biológicos , Consumo de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...