Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 34(10): 1882-1893, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37710950

RESUMEN

The pretargeting approach separates the biological half-life of an antibody from the physical half-life of the radioisotope label, providing a strategy for reducing the radiation burden. A widely explored pretargeting approach makes use of the bioorthogonal click reaction between tetrazines (Tzs) and trans-cyclooctenes (TCOs), combining the targeting specificity of monoclonal antibodies (mAbs) with the rapid clearance and precise reaction of Tzs and TCOs. Such a strategy can allow for the targeting and imaging (e.g., by positron emission tomography (PET)) of molecular markers, which cannot be addressed by solely relying on small molecules. Tz derivatives that undergo inverse electron-demand Diels-Alder (IEDDA) reactions with an antibody bearing TCO moieties have been investigated. This study describes the synthesis and characterization of 11 cold Tz imaging agent candidates. These molecules have the potential to be radiolabeled with 18F or 3H, and with the former label, they could be of use as imaging tracers for positron emission tomography studies. Selection was made using a multiparameter optimization score for the central nervous system (CNS) PET tracers. Novel tetrazines were tested for their pH-dependent chemical stability. Those which turned out to be stable in a pH range of 6.5-8 were further characterized in in vitro assays with regard to their passive permeability, microsomal stability, and P-glycoprotein transport. Furthermore, selected Tzs were examined for their systemic clearance and CNS penetration in a single-dose pharmacokinetic study in rats. Two tetrazines were successfully labeled with 18F, one of which showed brain penetration in a biodistribution study in mice. Another Tz was successfully tritium-labeled and used to demonstrate a bioorthogonal click reaction on a TCO-modified antibody. As a result, we identified one Tz as a potential fluorine-18-labeled CNS-PET agent and a second as a 3H-radioligand for an IEDDA-based reaction with a modified brain-penetrating antibody.


Asunto(s)
Compuestos Heterocíclicos , Ratones , Ratas , Animales , Distribución Tisular , Tomografía de Emisión de Positrones/métodos , Anticuerpos Monoclonales/química , Radiofármacos/química , Sistema Nervioso Central
2.
J Labelled Comp Radiopharm ; 66(9): 222-236, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37095603

RESUMEN

The beta-site amyloid precursor protein cleaving enzyme (BACE1) is responsible for initiating the generation of beta-amyloid, the major constituent of amyloid plaques in Alzheimer's disease (AD). The purpose of this study was to develop a specific BACE1 radioligand for visualization of the distribution pattern and quantification of the BACE1 protein in the rodent and monkey brain both in vitro by autoradiography and in vivo by positron emission tomography (PET). The BACE1 inhibitor RO6807936 originating from an in-house chemical drug optimization program was selected based on its PET tracer-like physicochemical properties and a favorable pharmacokinetic profile. Saturation binding analysis of [3 H]RO6807936 revealed specific and high-affinity binding (KD = 2.9 nM) and a low Bmax value (4.3 nM) of the BACE1 protein in native rat brain membranes. [3 H]RO6807936 binding showed a ubiquitous distribution on rat brain slices in vitro with higher levels in the CA3 pyramidal cell layer and the granule cell layer of the hippocampus. In a next step, RO6807936 was successfully radiolabeled with carbon-11 and showed acceptable uptake in the baboon brain as well as a widespread and rather homogeneous distribution consistent with rodent data. In vivo blockade studies with a specific BACE1 inhibitor reduced uptake of the tracer to homogenous levels across brain regions and demonstrated specificity of the signal. Our data warrant further profiling of this PET tracer candidate in humans to investigate BACE1 expression in normal individuals and those with AD and as an imaging biomarker for target occupancy studies in clinical drug trials.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Ratas , Animales , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Roedores/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Papio/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Tomografía de Emisión de Positrones/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo
3.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36558900

RESUMEN

Bioorthogonal pretargeted imaging using the inverse-electron-demand Diels-Alder (IEDDA) reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO) represents an attractive strategy for molecular imaging via antibodies. The advantages of using a pretargeted imaging approach are on the one hand the possibility to achieve a high signal-to-noise ratio and imaging contrast; on the other hand, the method allows the uncoupling of the biological half-life of antibodies from the physical half-life of short-lived radionuclides. A brain-penetrating antibody (mAb) specific for ß-amyloid (Aß) plaques was functionalized with TCO moieties for pretargeted labeling of Aß plaques in vitro, ex vivo, and in vivo by a tritium-labeled Tz. The overall aim was to explore the applicability of mAbs for brain imaging, using a preclinical model system. In vitro clicked mAb-TCO-Tz was able to pass the blood-brain barrier of transgenic PS2APP mice and specifically visualize Aß plaques ex vivo. Further experiments showed that click reactivity of the mAb-TCO construct in vivo persisted up to 3 days after injection by labeling Aß plaques ex vivo after incubation of brain sections with the Tz in vitro. An attempted in vivo click reaction between injected mAb-TCO and Tz did not lead to significant labeling of Aß plaques, most probably due to unfavorable in vivo properties of the used Tz and a long half-life of the mAb-TCO in the blood stream. This study clearly demonstrates that pretargeted imaging of CNS targets via antibody-based click chemistry is a viable approach. Further experiments are warranted to optimize the balance between stability and reactivity of all reactants, particularly the Tz.

4.
Eur J Med Chem ; 243: 114750, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36137365

RESUMEN

Monoacylglycerol lipase (MAGL) is a gatekeeper in regulating endocannabinoid signaling and has gained substantial attention as a therapeutic target for neurological disorders. We recently discovered a morpholin-3-one derivative as a novel scaffold for imaging MAGL via positron emission tomography (PET). However, its slow kinetics in vivo hampered the application. In this study, structural optimization was conducted and eleven novel MAGL inhibitors were designed and synthesized. Based on the results from MAGL inhibitory potency, in vitro metabolic stability and surface plasmon resonance assays, we identified compound 7 as a potential MAGL PET tracer candidate. [11C]7 was synthesized via direct 11CO2 fixation method and successfully mapped MAGL distribution patterns on rodent brains in in vitro autoradiography. PET studies in mice using [11C]7 demonstrated its improved kinetic profile compared to the lead structure. Its high specificity in vivo was proved by using MAGL KO mice. Although further studies confirmed that [11C]7 is a P-glycoprotein (P-gp) substrate in mice, its low P-gp efflux ratio on cells transfected with human protein suggests that it should not be an issue for the clinical translation of [11C]7 as a novel reversible MAGL PET tracer in human subjects. Overall, [11C]7 ([11C]RO7284390) showed promising results warranting further clinical evaluation.


Asunto(s)
Monoacilglicerol Lipasas , Tomografía Computarizada por Rayos X , Animales , Ratones , Humanos , Monoacilglicerol Lipasas/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/metabolismo , Cinética , Inhibidores Enzimáticos/química
5.
Nucl Med Biol ; 108-109: 24-32, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35248850

RESUMEN

Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays an important role in the endocannabinoid degradation in the brain. It has recently emerged as a promising therapeutic target in the treatment of neuroinflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Development of MAGL-specific radioligands for non-invasive imaging by positron-emission tomography (PET) would deepen our knowledge on the relevant pathological changes in diseased states and accelerate drug discovery. In this study, we report the selection and synthesis of two morpholine-3-one derivatives as potential reversible MAGL PET tracer candidates based on their multiparameter optimization scores. Both compounds ([11C]1, [11C]2) were radiolabeled by direct [11C]CO2 fixation and the in vitro autoradiographic studies demonstrated their specificity and selectivity towards MAGL. Dynamic PET imaging using MAGL knockout and wild-type mice confirmed the in vivo specificity of [11C]2. Our preliminary results indicate that morpholine-3-one derivative [11C]2 ([11C]RO7279991) binds to MAGL in vivo, and this molecular scaffold could serve as an alternative lead structure to image MAGL in the central nervous system.


Asunto(s)
Monoacilglicerol Lipasas , Tomografía de Emisión de Positrones , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/metabolismo , Ratones , Monoacilglicerol Lipasas/química , Monoacilglicerol Lipasas/metabolismo , Morfolinas/metabolismo , Tomografía de Emisión de Positrones/métodos
6.
J Med Chem ; 65(3): 2191-2207, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35089028

RESUMEN

Monoacylglycerol lipase (MAGL) is one of the key enzymes in the endocannabinoid system. Inhibition of MAGL has been proposed as an attractive approach for the treatment of various diseases. In this study, we designed and successfully synthesized two series of piperazinyl pyrrolidin-2-one derivatives as novel reversible MAGL inhibitors. (R)-[18F]13 was identified through the preliminary evaluation of two carbon-11-labeled racemic structures [11C]11 and [11C]16. In dynamic positron-emission tomography (PET) scans, (R)-[18F]13 showed a heterogeneous distribution and matched the MAGL expression pattern in the mouse brain. High brain uptake and brain-to-blood ratio were achieved by (R)-[18F]13 in comparison with previously reported reversible MAGL PET radiotracers. Target occupancy studies with a therapeutic MAGL inhibitor revealed a dose-dependent reduction of (R)-[18F]13 accumulation in the mouse brain. These findings indicate that (R)-[18F]13 ([18F]YH149) is a highly promising PET probe for visualizing MAGL non-invasively in vivo and holds great potential to support drug development.


Asunto(s)
Encéfalo/diagnóstico por imagen , Inhibidores Enzimáticos/química , Monoacilglicerol Lipasas/metabolismo , Neuroimagen/métodos , Radiofármacos/química , Animales , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Cristalografía por Rayos X , Estabilidad de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Ratones , Conformación Molecular , Monoacilglicerol Lipasas/química , Tomografía de Emisión de Positrones , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Ratas , Ratas Wistar , Relación Estructura-Actividad , Distribución Tisular
7.
J Med Chem ; 60(17): 7350-7370, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28654263

RESUMEN

Aggregates of tau and beta amyloid (Aß) plaques constitute the histopathological hallmarks of Alzheimer's disease and are prominent targets for novel therapeutics as well as for biomarkers for diagnostic in vivo imaging. In recent years much attention has been devoted to the discovery and development of new PET tracers to image tau aggregates in the living human brain. Access to a selective PET tracer to image and quantify tau aggregates represents a unique tool to support the development of any novel therapeutic agent targeting pathological forms of tau. The objective of the study described herein was to identify such a novel radiotracer. As a result of this work, we discovered three novel PET tracers (2-(4-[11C]methoxyphenyl)imidazo[1,2-a]pyridin-7-amine 7 ([11C]RO6924963), N-[11C]methyl-2-(3-methylphenyl)imidazo[1,2-a]pyrimidin-7-amine 8 ([11C]RO6931643), and [18F]2-(6-fluoropyridin-3-yl)pyrrolo[2,3-b:4,5-c']dipyridine 9 ([18F]RO6958948)) with high affinity for tau neurofibrillary tangles, excellent selectivity against Aß plaques, and appropriate pharmacokinetic and metabolic properties in mice and non-human primates.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Radioisótopos de Carbono/química , Radioisótopos de Flúor/química , Tomografía de Emisión de Positrones/métodos , Agregación Patológica de Proteínas/diagnóstico por imagen , Pirimidinas/química , Proteínas tau/análisis , Animales , Radioisótopos de Carbono/farmacocinética , Radioisótopos de Flúor/farmacocinética , Humanos , Masculino , Ratones , Papio , Pirimidinas/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...