Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36987236

RESUMEN

Two nanomicas of similar composition, containing muscovite and quartz, but with different particle size distributions, have been used to prepare transparent epoxy nanocomposites. Their homogeneous dispersion, due to the nano-size, was achieved even without being organically modified, and no aggregation of the nanoparticles was observed, thus maximizing the specific interface between matrix and nanofiller. No exfoliation or intercalation has been observed by XRD, despite the significant dispersion of the filler in the matrix which produced nanocomposites with a loss in transparency in the visible domain of less than 10% in the presence of 1% wt and 3% wt of mica fillers. The presence of micas does not affect the thermal behavior of the nanocomposites, which remains similar to that of the neat epoxy resin. The mechanical characterization of the epoxy resin composites revealed an increased Young's modulus, whereas tensile strength was reduced. A peridynamics-based representative volume element approach has been implemented to estimate the effective Young's modulus of the nanomodified materials. The results obtained through this homogenization procedure have been used as input for the analysis of the nanocomposite fracture toughness, which has been carried out by a classical continuum mechanics-peridynamics coupling approach. Comparison with the experimental data confirms the capability of the peridynamics-based strategies to properly model the effective Young's modulus and fracture toughness of epoxy-resin nanocomposites. Finally, the new mica-based composites exhibit high values of volume resistivity, thus being excellent candidates as insulating materials.

2.
Materials (Basel) ; 12(12)2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31200532

RESUMEN

Since the late 1950s, an effect of electrical current in addition to joule heating on the deformation of metals called the Electroplastic Effect (EPE) has been known. It is used nowadays in the so-called Electrically Assisted Forming (EAF) processes, but the understanding of the phenomenon is not very clear yet. It has been found that EPE increases the formability of high stacking fault energy (SFE) materials, while low SFE materials reach fracture prematurely. Since Duplex Stainless Steels (DSSs) possess a microstructure consisting of two phases with very different SFE (low SFE austenite and high SFE ferrite) and they are widely used in industry, we investigated EPE on those alloys. Tensile tests at 5 A/mm2, 10 A/mm2 and 15 A/mm2 current densities along with thermal counterparts were conducted on UNS S32101, UNS S32205, UNS S32304 and UNS S32750. The DSS grades were characterized by means of optical microscopy, X-ray diffraction and their mechanical properties (ultimate tensile strength, total elongation, uniform elongation and yield stress). An increase in uniform elongation for the electrical tests compared to the thermal counterparts as well as an increase in total elongation was found. No differences were observed on the yield stress and on the ultimate tensile strength. Un uneven distribution of the current because of the different resistivity and work hardening of the two phases has been hypothesized as the explanation for the positive effect of EPE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...