Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257617

RESUMEN

In experimental medicine, a wide variety of sensory measurements are used. One of these is real-time precision pressure measurement. For comparative studies of the complex pathophysiology and surgical management of abdominal compartment syndrome, a multichannel pressure measurement system is essential. An important aspect is that this multichannel pressure measurement system should be able to monitor the pressure conditions in different tissue layers, and compartments, under different settings. We created a 12-channel positive-negative sensor system for simultaneous detection of pressure conditions in the abdominal cavity, the intestines, and the circulatory system. The same pressure sensor was used with different measurement ranges. In this paper, we describe the device and major experiences, advantages, and disadvantages. The sensory systems are capable of real-time, variable frequency sampling and data collection. It is also important to note that the pressure measurement system should be able to measure pressure with high sensitivity, independently of the filling medium (gas, liquid). The multichannel pressure measurement system we developed was well suited for abdominal compartment syndrome experiments and provided data for optimizing the method of negative pressure wound management. The system is also suitable for direct blood pressure measurement, making it appropriate for use in additional experimental surgical models.


Asunto(s)
Investigación Biomédica , Hipertensión Intraabdominal , Humanos , Hipertensión Intraabdominal/diagnóstico , Hipertensión Intraabdominal/cirugía , Determinación de la Presión Sanguínea , Cultura , Modelos Anatómicos
3.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069018

RESUMEN

The proper regeneration of vessel anastomoses in microvascular surgery is crucial for surgical safety. Pituitary adenylate cyclase-activating polypeptide (PACAP) can aid healing by decreasing inflammation, apoptosis and oxidative stress. In addition to hematological and hemorheological tests, we examined the biomechanical and histological features of vascular anastomoses with or without PACAP addition and/or using a hemostatic sponge (HS). End-to-end anastomoses were established on the right femoral arteries of rats. On the 21st postoperative day, femoral arteries were surgically removed for evaluation of tensile strength and for histological and molecular biological examination. Effects of PACAP were also investigated in tissue culture in vitro to avoid the effects of PACAP degrading enzymes. Surgical trauma and PACAP absorption altered laboratory parameters; most notably, the erythrocyte deformability decreased. Arterial wall thickness showed a reduction in the presence of HS, which was compensated by PACAP in both the tunica media and adventitia in vivo. The administration of PACAP elevated these parameters in vitro. In conclusion, the application of the neuropeptide augmented elastin expression while HS reduced it, but no significant alterations were detected in collagen type I expression. Elasticity and tensile strength increased in the PACAP group, while it decreased in the HS decreased. Their combined use was beneficial for vascular regeneration.


Asunto(s)
Hemostáticos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Ratas , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Hemostáticos/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/metabolismo
4.
Sensors (Basel) ; 18(3)2018 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-29562626

RESUMEN

(1) Introduction: Negative pressure wound therapy (NPWT) is a frequently applied open abdomen (OA) treatment. There are only a few experimental data supporting this method and describing the optimal settings and pressure distribution in the abdominal cavity during this procedure. The aim of our study was to evaluate pressure values at different points in the abdominal cavity during NPWT in experimental abdominal compartment syndrome (ACS) animal model; (2) Methods: In this study (permission Nr. 13/2014/UDCAW), 27 Hungahib pigs (15.4-20.2 kg) were operated on. ACS was generated by implanting a plastic bag in the abdomen through mini-laparotomy and filled with 2100-3300 mL saline solution (37 °C) to an intraabdominal pressure (IAP) of 30 mmHg. After 3 h, NPWT (Vivano Med® Abdominal Kit, Paul Hartmann AG, Germany) or a Bogota bag was applied. The NPWT group was divided into -50, -100 and -150 mmHg suction groups. Pressure distribution to the abdominal cavity was monitored at 6 different points of the abdomen via a multichannel pressure monitoring system; (3) Results: The absolute pressure levels were significantly higher above than below the protective layer. The values of the pressure were similar in the midline and laterally. Amongst the bowels, the pressure values changed periodically between 0 and -12 mmHg which might be caused by peristaltic movements; (4) Conclusions: The porcine model of the present study seems to be well applicable for investigating ACS and NPWT. It was possible to provide valuable information for clinicians. The pressure was well distributed by the protective layer to the lateral parts of the abdomen and this phenomenon did not change considerably during the therapy.


Asunto(s)
Terapia de Presión Negativa para Heridas , Animales , Modelos Animales de Enfermedad , Hipertensión Intraabdominal , Monitoreo Fisiológico , Presión , Rotación , Porcinos
5.
Stud Health Technol Inform ; 213: 193-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26152990

RESUMEN

A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.


Asunto(s)
Formación Reticular Mesencefálica/fisiología , Redes Neurales de la Computación , Potenciales de Acción/fisiología , Animales , Humanos , Fenómenos Fisiológicos del Sistema Nervioso , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...