Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 165(7): 722-736, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31091188

RESUMEN

Mycobacteriophages that are specific to mycobacteria are sources of various effector proteins that are capable of eliciting bactericidal responses. We describe a genomics approach in combination with bioinformatics to identify mycobacteriophage proteins that are toxic to mycobacteria upon expression. A genomic library comprising phage genome collections was screened for clones capable of killing Mycobacterium smegmatis strain mc2155. We identified four unique clones: clones 45 and 12N (from the mycobacteriophage D29) and clones 66 and 85 (from the mycobacteriophage Che12). The gene products from clones 66 and 45 were identified as Gp49 of the Che12 phage and Gp34 of the D29 phage, respectively. The gene products of the other two clones, 85 and 12N, utilized novel open reading frames (ORFs) coding for synthetic proteins. These four clones (clones 45, 66, 85 and 12N) caused growth defects in M. smegmatis and Mycobacterium bovis upon expression. Clones with Gp49 and Gp34 also induced growth defects in Escherichia coli, indicating that they target conserved host machineries. Their expression induced various morphological changes, indicating that they affected DNA replication and cell division steps. We predicted that Gp34 is a Xis protein that is required in phage DNA excision from the bacterial chromosome. Gp49 is predicted to have an HTH motif with DNA-bending/twisting properties. We suggest that this methodology is useful to identify new phage proteins with the desired properties without laboriously characterizing the individual phages. It is universal and could be applied to other bacteria-phage systems. We speculate that the existence of a virtually unlimited number of phages with unique gene products could offer a cheaper and less hazardous alternative to explore new antimicrobial molecules.


Asunto(s)
Micobacteriófagos/genética , Mycobacterium bovis/virología , Mycobacterium smegmatis/virología , Proteínas Virales/genética , Genoma Viral , Genómica , Micobacteriófagos/clasificación , Micobacteriófagos/aislamiento & purificación , Micobacteriófagos/fisiología , Mycobacterium bovis/crecimiento & desarrollo , Mycobacterium smegmatis/crecimiento & desarrollo , Sistemas de Lectura Abierta , Filogenia , Proteínas Virales/química , Proteínas Virales/metabolismo
2.
J Biol Chem ; 288(39): 28089-103, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23913688

RESUMEN

The bacterial transcription elongation factor, NusA, functions as an antiterminator when it is bound to the lambdoid phage derived antiterminator protein, N. The mode of N-NusA interaction is unknown, knowledge of which is essential to understand the antitermination process. It was reported earlier that in the absence of the transcription elongation complex (EC), N interacts with the C-terminal AR1 domain of NusA. However, the functional significance of this interaction is obscure. Here we identified mutations in NusA N terminus (NTD) specifically defective for N-mediated antitermination. These are located at a convex surface of the NusA-NTD, situated opposite its concave RNA polymerase (RNAP) binding surface. These NusA mutants disrupt the N-nut site interactions on the nascent RNA emerging out of a stalled EC. In the N/NusA-modified EC, a Cys-53 (S53C) from the convex surface of the NusA-NTD forms a specific disulfide (S-S) bridge with a Cys-39 (S39C) of the NusA binding region of the N protein. We conclude that when bound to the EC, the N interaction surface of NusA shifts from the AR1 domain to its NTD domain. This occurred due to a massive away-movement of the adjacent AR2 domain of NusA upon binding to the EC. We propose that the close proximity of this altered N-interaction site of NusA to its RNAP binding surface, enables N to influence the NusA-RNAP interaction during transcription antitermination that in turn facilitates the conversion of NusA into an antiterminator.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Bacteriófagos/metabolismo , Sitios de Unión , Cisteína/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Mutación , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Ribonucleasa H/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA