Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Paediatr ; 112(10): 2210-2217, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37378619

RESUMEN

AIM: The gut-liver axis may contribute to pathophysiology of cholestatic liver disorders like biliary atresia (BA) by bacterial translocation (BT). Toll-like receptors (TLR) are pattern recognition receptors known to activate innate immunity and secretion of inflammatory cytokines. Herein, we examined BT-associated biomarkers and TLRs in relation to liver injury after successful portoenterostomy (SPE) in BA. METHODS: Serum levels of lipopolysaccharide-binding protein (LBP), CD14, LAL, TNF-α, IL-6 and FABP2 along with liver expression of TLRs (TLR1, TLR4, TLR7 and TLR9), LBP and CD14 were measured during median 4.9 (1.7-10.6) years follow-up after SPE in 45 BA patients. RESULTS: Serum LBP, CD14, TNF-α and IL-6 all increased after SPE whereas LAL and FABP-2 remained unchanged. Serum LBP correlated positively with CD14 and markers of hepatocyte injury and cholestasis, but not with Metavir fibrosis stage, transcriptional markers for fibrosis (ACTA2) or ductular reaction. Serum CD14 concentration was significantly higher in patients with portal hypertension than without. While liver expression of TLR4 and LBP remained low, TLR7 and TLR1 showed marked BA-specific increases, and TLR7 correlated with Metavir fibrosis stage and ACTA2. CONCLUSION: BT does not seem to play a significant role in liver injury after SPE in our series of BA patients.


Asunto(s)
Traslocación Bacteriana , Atresia Biliar , Portoenterostomía Hepática , Receptores Toll-Like , Niño , Humanos , Atresia Biliar/cirugía , Portoenterostomía Hepática/métodos , Receptores Toll-Like/sangre , Biomarcadores , Factor de Necrosis Tumoral alfa
2.
Sci Rep ; 12(1): 7233, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508528

RESUMEN

Biliary atresia (BA) is a chronic neonatal cholangiopathy characterized by fibroinflammatory bile duct damage. Reliable biomarkers for predicting native liver survival (NLS) following portoenterostomy (PE) surgery are lacking. Herein we explore the utility of 22 preidentified profibrotic molecules closely connected to ductular reaction (DR) and prevailing after successful PE (SPE), in predicting PE outcomes and liver injury. We used qPCR and immunohistochemistry in a BA cohort including liver samples obtained at PE (n = 53) and during postoperative follow-up after SPE (n = 25). Of the 13 genes over-expressed in relation to cholestatic age-matched controls at PE, only secretin receptor (SCTR) expression predicted cumulative 5-year NLS and clearance of jaundice. Patients in the highest SCTR expression tertile showed 34-55% lower NLS than other groups at 1-5 years after PE (P = 0.006-0.04 for each year). SCTR expression was also significantly lower [42 (24-63) vs 75 (39-107) fold, P = 0.015] among those who normalized their serum bilirubin after PE. Liver SCTR expression localized in cholangiocytes and correlated positively with liver fibrosis, DR, and transcriptional markers of fibrosis (ACTA2) and cholangiocytes (KRT7, KRT19) both at PE and after SPE. SCTR is a promising prognostic marker for PE outcomes and associates with liver injury in BA.


Asunto(s)
Atresia Biliar , Receptores de la Hormona Gastrointestinal , Atresia Biliar/metabolismo , Biomarcadores/metabolismo , Humanos , Lactante , Recién Nacido , Hígado/metabolismo , Hígado/cirugía , Portoenterostomía Hepática , Receptores Acoplados a Proteínas G , Receptores de la Hormona Gastrointestinal/genética , Resultado del Tratamiento
3.
J Clin Med ; 10(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207442

RESUMEN

Interleukin (IL)-8 (CXCL8), a chemokine involved in neutrophil recruitment, has been implicated in ductular reaction and liver fibrogenesis. We studied liver and serum IL-8 expression in a large biliary atresia (BA) cohort and explored its prognostic and pathophysiological potential. IL-8 expression was assessed in liver utilizing quantitative polymerase chain reaction (qPCR), immunohistochemistry and in situ hybridization and in serum using an enzyme-linked immunosorbent assay, among 115 BA patients, 10 disease controls and 68 normal controls. Results were correlated to portoenterostomy (PE) outcomes, biochemical and histological liver injury, transcriptional markers of fibrosis and cholangiocytes, and expression of other related cytokines. IL-8 was markedly overexpressed in liver and serum of BA patients at PE (n = 88) and in serum samples obtained during postoperative follow-up (n = 40). IL-8 expression in the liver was predominantly in cholangiocytes within areas of ductular reaction. Liver IL-8 mRNA expression correlated positively with its serum concentration, bile ductular proliferation, Metavir fibrosis stage, and transcriptional markers of activated myofibroblasts (ACTA2) and cholangiocytes (KRT19). Taken together, IL-8 may mediate liver injury in BA by promoting ductular reaction and associated liver fibrogenesis. Prognostic value of serum IL-8 to predict native liver survival was limited and confined to the postoperative period after PE.

4.
Hepatol Commun ; 5(6): 1036-1050, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141988

RESUMEN

Successful portoenterostomy (SPE) improves the short-term outcome of patients with biliary atresia (BA) by relieving cholestasis and extending survival with native liver. Despite SPE, hepatic fibrosis progresses in most patients, leading to cirrhosis and a deterioration of liver function. The goal of this study was to characterize the effects of SPE on the BA liver transcriptome. We used messenger RNA sequencing to analyze global gene-expression patterns in liver biopsies obtained at the time of portoenterostomy (n = 13) and 1 year after SPE (n = 8). Biopsies from pediatric (n = 2) and adult (n = 2) organ donors and other neonatal cholestatic conditions (n = 5) served as controls. SPE was accompanied by attenuation of inflammation and concomitant up-regulation of key extracellular matrix (ECM) genes. Highly overexpressed genes promoting biliary fibrosis and bile duct integrity, such as integrin subunit beta 6 and previously unreported laminin subunit alpha 3, emerged as candidates to control liver fibrosis after SPE. At a cellular level, the relative abundance of activated hepatic stellate cells and liver macrophages decreased following SPE, whereas portal fibroblasts (PFs) and cholangiocytes persisted. Conclusion: The attenuation of inflammation following SPE coincides with emergence of an ECM molecular fingerprint, a set of profibrotic molecules mechanistically connected to biliary fibrosis. The persistence of activated PFs and cholangiocytes after SPE suggests a central role for these cell types in the progression of biliary fibrosis.

5.
J Pediatr Surg ; 56(5): 966-974, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33131778

RESUMEN

BACKGROUND: Intestinal adaptation has been extensively studied experimentally, but very limited data is available on human subjects. In this study we assessed intestinal adaption in humans with short bowel syndrome (SBS). METHODS: We comparatively evaluated mucosal hyperplasia, inflammation, barrier function and nutrient transport using histology, immunohistochemistry and qPCR for selected 52 key genes in duodenal biopsies obtained from children with SBS after weaning off parenteral nutrition (n = 33), and matched controls without intestinal pathology (n = 12). Small bowel dilatation was assessed from contrast small bowel series. RESULTS: Duodenal mucosa of SBS children showed increased histologic inflammation of lamina propria (p = 0.033) and mucosal mRNA expression of tumor necrosis factor (p = 0.027), transforming growth factor (TGF)-ß2 (p = 0.006) and caveolin-1 (CAV1; p = 0.001). Villus height, crypt depth, enterocyte proliferation, apoptosis and expression of proliferation and nutrient transport genes remained unchanged. Pathologic small bowel dilatation reduced crypt depth (p = 0.045) and downregulated mRNA expression of interleukin (IL)-6 by three-fold (p = 0.008), while correlating negatively with IL6 (r = -0.609, p = 0.004). Loss of ileocecal valve (ICV) upregulated mRNA expression of toll-like receptor 4 (TLR4), TGF-ß1, CAV1, several apoptosis regulating genes, and mRNA expression of zonulin (p < 0.05 for all). CONCLUSIONS: Despite successful adaptation to enteral autonomy, duodenal mucosa of SBS children displayed histologic and molecular signs of abnormal inflammation and regulation of epithelial permeability, whereas no structural or molecular signs of adaptive hyperplasia or enhanced nutrient transport were observed. Excessive dilatation of the remaining small bowel paralleled impaired duodenal crypt homeostasis, while absence of ICV modified regulation of mucosal inflammation, regeneration and permeability. LEVEL OF EVIDENCE: II.


Asunto(s)
Síndrome del Intestino Corto , Adaptación Fisiológica , Animales , Niño , Modelos Animales de Enfermedad , Humanos , Mucosa Intestinal , Intestino Delgado , Ratas , Ratas Sprague-Dawley
6.
JPEN J Parenter Enteral Nutr ; 44(7): 1291-1300, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31985858

RESUMEN

BACKGROUND: Although adaptive mucosal growth of the remaining small intestine is an essential compensatory mechanism to bowel resection in experimental short-bowel syndrome (SBS), only scarce clinical data are available. We studied structural and molecular mechanisms of intestinal adaptation in children with SBS. METHODS: Fourteen patients, who had been dependent on parenteral nutrition (PN) since neonatal period for a median (interquartile range)1.4 (0.7-6.5) years, were studied at the age of 1.5 (1.0-6.5) years. Median length of remaining small bowel was 33 (12-60) cm, and 6 patients had their ileocecal valve preserved. Six children without gastrointestinal disorders served as age-matched and gender-matched controls. All patients underwent duodenal biopsies. Mucosal microarchitecture, proliferation, apoptosis, inflammation, and epithelial-barrier function were addressed using histology, immunohistochemistry, and quantitative real-time polymerase chain reaction. RESULTS: Villus height, crypt depth, enterocyte proliferation, and apoptosis were similar in patients and matched controls. Messenger RNA (mRNA) expression of numerous genes regulating gut epithelial-barrier function (TGFB2, CAV1, CLDN1, MUC2, and NLRC4) was significantly altered. Of various nutrient transporters studied, only expression of SLC2A1 encoding facilitative glucose transporter GLUT1 was increased among patients, whereas RNA expression of genes encoding sodium-dependent glucose, sterol, fatty-acid, and peptide transport remained unchanged. CONCLUSION: Duodenal mucosal hyperplasia has a limited role in mediating physiological adaptation following intestinal resection among PN-dependent children with SBS. Further clinical studies addressing functional significance of the observed alterations in mucosal RNA expression are warranted.


Asunto(s)
Síndrome del Intestino Corto , Adaptación Fisiológica , Animales , Niño , Preescolar , Modelos Animales de Enfermedad , Humanos , Hiperplasia/patología , Lactante , Mucosa Intestinal/patología , Intestino Delgado/patología , Ratas , Ratas Sprague-Dawley , Síndrome del Intestino Corto/patología , Síndrome del Intestino Corto/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...