Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Supercond Sci Technol ; 30(3)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28360455

RESUMEN

We performed a feasibility study on a high-strength Bi2-x Pb x Sr2Ca2Cu3O10-x (Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries (SEI). It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥ 0.92% (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

2.
Artículo en Inglés | MEDLINE | ID: mdl-30906172

RESUMEN

Recently, significant improvement in the strain tolerance of Bi-2223 conductor has been achieved by lamination with high strength nickel alloy. The conductor, supplied by Sumitomo Electric and designated Type HT-NX, is now commercially available in lengths sufficient for manufacture of high-homogeneity solenoids. A program to fully exploit the improved conductor properties is now underway at the National High Magnetic Field Laboratory (NHMFL). Five coils are being made, the last of which is to demonstrate an NMR measurement approaching 1 GHz and 1 ppm over 10 mm volume. In so doing, we expect to demonstrate critical current fraction, and strain similar to that expected in 30 T NMR magnets. The coils will be tested inside an existing 16 Tesla large-bore background magnet at the NHMFL. The design of the NMR demonstration coil is presented first, with expected values for field, homogeneity and strain given. A technology development program is then outlined, which includes fabrication of four test coils to test various design features, develop fabrication tooling and train personnel.

3.
Rev Sci Instrum ; 81(3): 035107, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20370213

RESUMEN

This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA