Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Curr Biol ; 32(6): R292-R294, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35349820

RESUMEN

Endosomal sorting complex required for transport (ESCRT) proteins can promote extreme membrane deformations, including scission and sealing. New work uncovers a link between these proteins and the early secretory pathway that is functionally important for programmed autophagy during Drosophila development.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas , Autofagia , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Transporte de Proteínas
3.
Autophagy ; 18(1): 223-225, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34491884

RESUMEN

Clearance of misfolded proteins from the secretory pathway often occurs soon after their biosynthesis by endoplasmic reticulum (ER)-associated protein degradation (ERAD). However, certain types of misfolded proteins are not ERAD substrates and exit the ER. They are then scrutinized by ill-defined post-ER quality control (post-ERQC) mechanisms and are frequently routed to the vacuole/lysosome for degradation. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) constitute a class of proteins of the secretory pathway that mostly depends on post-ERQC. How misfolded GPI-APs are detected, transported to the vacuole/lysosome and taken up by this organelle was poorly defined. Originating from the intriguing observation that several misfolded GPI-APs accumulate in the yeast vacuolar membrane in the absence of the major vacuolar protease Pep4, we designed an unbiased genome-wide screen in yeast and followed the trafficking of the misfolded fluorescent GPI-AP Gas1* from the ER to the vacuolar lumen. Our results reveal that post-ERQC of GPI-APs is linked with a novel type of microautophagy.


Asunto(s)
Microautofagia , Proteínas de Saccharomyces cerevisiae , Ácido Aspártico Endopeptidasas/metabolismo , Autofagia , Retículo Endoplásmico/metabolismo , Proteínas Ligadas a GPI/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Curr Biol ; 31(18): 4025-4037.e5, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34314677

RESUMEN

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are membrane-conjugated cell-surface proteins with diverse structural, developmental, and signaling functions and clinical relevance. Typically, after biosynthesis and attachment to the preassembled GPI anchor, GPI-APs rapidly leave the endoplasmic reticulum (ER) and rely on post-ER quality control. Terminally misfolded GPI-APs end up inside the vacuole/lysosome for degradation, but their trafficking itinerary to this organelle and the processes linked to their uptake by the vacuole/lysosome remain uncharacterized. In a yeast mutant that is lacking Pep4, a key vacuolar protease, several misfolded model GPI-APs accumulated in the vacuolar membrane. In the same mutant, macroautophagy and the multi-vesicular body (MVB) pathway were intact, hinting at a hitherto-unknown trafficking pathway for the degradation of misfolded GPI-APs. To unravel it, we used a genome-wide screen coupled to high-throughput fluorescence microscopy and followed the fate of the misfolded GPI-AP: Gas1∗. We found that components of the early secretory and endocytic pathways are involved in its targeting to the vacuole and that vacuolar transporter chaperones (VTCs), with roles in microautophagy, negatively affect the vacuolar uptake of Gas1∗. In support, we demonstrate that Gas1∗ internalizes from vacuolar membranes into membrane-bound intravacuolar vesicles prior to degradation. Our data link post-ER degradation with microautophagy.


Asunto(s)
Glicosilfosfatidilinositoles , Microautofagia , Retículo Endoplásmico/metabolismo , Proteínas Ligadas a GPI/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Cells ; 9(5)2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32456004

RESUMEN

The cellular mechanisms that ensure the selectivity and fidelity of secretory cargo protein transport from the endoplasmic reticulum (ER) to the Golgi are still not well understood. The p24 protein complex acts as a specific cargo receptor for GPI-anchored proteins by facilitating their ER exit through a specialized export pathway in yeast. In parallel, the p24 complex can also exit the ER using the general pathway that exports the rest of secretory proteins with their respective cargo receptors. Here, we show biochemically that the p24 complex associates at the ER with other cargo receptors in a COPII-dependent manner, forming high-molecular weight multireceptor complexes. Furthermore, live cell imaging analysis reveals that the p24 complex is required to retain in the ER secretory cargos when their specific receptors are absent. This requirement does not involve neither the unfolded protein response nor the retrograde transport from the Golgi. Our results suggest that, in addition to its role as a cargo receptor in the specialized GPI-anchored protein pathway, the p24 complex also plays an independent role in secretory cargo selectivity during its exit through the general ER export pathway, preventing the non-selective bulk flow of native secretory cargos. This mechanism would ensure receptor-regulated cargo transport, providing an additional layer of regulation of secretory cargo selectivity during ER export.


Asunto(s)
Retículo Endoplásmico/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Membranas Intracelulares/metabolismo , Modelos Biológicos , Transporte de Proteínas , Receptores de Superficie Celular/metabolismo , Respuesta de Proteína Desplegada
6.
Artículo en Inglés | MEDLINE | ID: mdl-31233887

RESUMEN

Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a conserved cellular process that apart from protein quality control and maintenance of ER membrane identity has pivotal functions in regulating the lipid composition of the ER membrane. A general trigger for ERAD activation is the exposure of normally buried protein domains due to protein misfolding, absence of binding partners or conformational changes. Several feedback loops for ER lipid homeostasis exploit the induction of conformational changes in key enzymes of lipid biosynthesis or in ER membrane-embedded transcription factors upon shortage or abundance of specific lipids, leading to enzyme degradation or mobilization of transcription factors. Similarly, an insufficient amount of lipids triggers ERAD of apolipoproteins during lipoprotein formation. Lipids might even have a role in ER protein quality control: when proteins destined for ER export are covalently modified with lipids their ER residence time and their susceptibility to ERAD is reduced. Here we summarize and compare the various interconnections of lipids with ER membrane proteins and ERAD. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Metabolismo de los Lípidos , Animales , Retículo Endoplásmico/metabolismo , Humanos , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Esteroles/metabolismo , Factores de Transcripción/metabolismo
7.
Cell Death Differ ; 26(9): 1545-1565, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30770874

RESUMEN

In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.


Asunto(s)
Autofagia/genética , Caenorhabditis elegans/genética , Glutatión Reductasa/metabolismo , Glutatión/metabolismo , Péptidos/toxicidad , Agregación Patológica de Proteínas/metabolismo , Proteostasis/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Glutatión/genética , Glutatión Reductasa/genética , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos , Maleatos/farmacología , Células Musculares/metabolismo , Neuronas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Péptidos/antagonistas & inhibidores , Fenotipo , Proteolisis/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Mol Cell Oncol ; 4(1): e1173768, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197529

RESUMEN

The endoplasmic reticulum (ER) is considered a prominent membrane source for the formation of autophagosomes. Recent results from our laboratory revealed a cellular mechanism for the contribution of the ER to autophagosomes in yeast: membranes, together with unconventional membrane fusion machinery, are delivered to sites of autophagosome formation by specific coat protein complex II (COPII) vesicles.

9.
J Cell Biol ; 213(6): 693-704, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27325793

RESUMEN

Endoplasmic reticulum (ER) quality control mechanisms target terminally misfolded proteins for ER-associated degradation (ERAD). Misfolded glycophosphatidylinositol-anchored proteins (GPI-APs) are, however, generally poor ERAD substrates and are targeted mainly to the vacuole/lysosome for degradation, leading to predictions that a GPI anchor sterically obstructs ERAD. Here we analyzed the degradation of the misfolded GPI-AP Gas1* in yeast. We could efficiently route Gas1* to Hrd1-dependent ERAD and provide evidence that it contains a GPI anchor, ruling out that a GPI anchor obstructs ERAD. Instead, we show that the normally decreased susceptibility of Gas1* to ERAD is caused by canonical remodeling of its GPI anchor, which occurs in all GPI-APs and provides a protein-independent ER export signal. Thus, GPI anchor remodeling is independent of protein folding and leads to efficient ER export of even misfolded species. Our data imply that ER quality control is limited for the entire class of GPI-APs, many of them being clinically relevant.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Unión Proteica/fisiología , Pliegue de Proteína , Levaduras/metabolismo , Levaduras/fisiología
10.
Autophagy ; 12(6): 1049-50, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27124469

RESUMEN

The endoplasmic reticulum (ER) is a major source for the generation of autophagosomes during macroautophagy. Our recent work in yeast shows that particular ER-derived vesicles are generated for the biogenesis of autophagosomes. These vesicles not only incorporate a SNARE protein that is largely ER-resident under nonstarving conditions, but also display COPII requirements for ER-exit that differ from conventional cargo-transporting vesicles. Our results suggest that specific intracellular traffic is launched at the ER for the transport of membranes to sites of autophagosome formation.


Asunto(s)
Autofagosomas/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas SNARE/metabolismo , Animales , Humanos , Modelos Biológicos
11.
Cell Rep ; 14(7): 1710-1722, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26876173

RESUMEN

The de novo formation of autophagosomes for the targeting of cytosolic material to the vacuole/lysosome is upregulated upon starvation. How autophagosomes acquire membranes remains still unclear. Here, we report that, in yeast, the endoplasmic reticulum (ER)-localized Qa/t-SNARE Ufe1 has a role in autophagy. During starvation, Ufe1 is increasingly exported from the ER and targeted to intracellular sites that contain the autophagy markers Atg8 and Atg9. In addition, Ufe1 interacts with non-ER SNARE proteins implicated in autophagosome formation. Loss of Ufe1 function impairs autophagy and results in fewer and smaller autophagosomes. Unlike conventional cargo, the ER export of Ufe1 is significantly reduced in sec23-1 cells, which affects the coat protein (COP)II complex, already at the permissive temperature. Under the same conditions, sec23-1 cells are hypersensitive to starvation and deficient in autophagy. Our data suggest that ER membranes containing Ufe1 are delivered to sites of autophagosome formation in specific COPII vesicles.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica , Biogénesis de Organelos , Fagosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Medios de Cultivo/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Nitrógeno/deficiencia , Fagosomas/efectos de los fármacos , Fagosomas/ultraestructura , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Temperatura , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/ultraestructura
12.
Curr Biol ; 25(2): 152-162, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25557665

RESUMEN

BACKGROUND: Export from the ER is an essential process driven by the COPII coat, which forms vesicles at ER exit sites (ERESs) to transport mature secretory proteins to the Golgi. Although the basic mechanism of COPII assembly is known, how COPII machinery is regulated to meet varying cellular secretory demands is unclear. RESULTS: Here, we report a specialized COPII system that is actively recruited by luminal cargo maturation. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are luminal secretory proteins anchored to the membrane by the glycolipid GPI. After protein attachment in the ER lumen, lipid and glycan parts of the GPI anchor are remodeled. In yeast, GPI-lipid remodeling concentrates GPI-APs into specific ERESs. We found that GPI-glycan remodeling induces subsequent recruitment of the specialized ER export machinery that enables vesicle formation from these specific ERESs. First, the transmembrane cargo receptor p24 complex binds GPI-APs as a lectin by recognizing the remodeled GPI-glycan. Binding of remodeled cargo induces the p24 complex to recruit the COPII subtype Lst1p, specifically required for GPI-AP ER export. CONCLUSIONS: Our results show that COPII coat recruitment by cargo receptors is not constitutive but instead is actively regulated by binding of mature ligands. Therefore, we reveal a novel functional link between luminal cargo maturation and COPII vesicle budding, providing a mechanism to adjust specialized COPII vesicle production to the amount and quality of their luminal cargos that are ready for ER exit. This helps to understand how the ER export machinery adapts to different needs for luminal cargo secretion.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Saccharomyces cerevisiae/metabolismo , Unión Proteica
13.
Cells ; 3(3): 824-47, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25100021

RESUMEN

Quality control of protein folding inside the endoplasmic reticulum (ER) includes chaperone-mediated assistance in folding and the selective targeting of terminally misfolded species to a pathway called ER-associated protein degradation, or simply ERAD. Once selected for ERAD, substrates will be transported (back) into the cytosol, a step called retrotranslocation. Although still ill defined, retrotranslocation likely involves a protein conducting channel that is in part formed by specific membrane-embedded E3 ubiquitin ligases. Early during retrotranslocation, reversible self-ubiquitination of these ligases is thought to aid in initiation of substrate transfer across the membrane. Once being at least partially exposed to the cytosol, substrates will become ubiquitinated on the cytosolic side of the ER membrane by the same E3 ubiquitin ligases. Ubiquitin on substrates was originally thought to be a permanent modification that (1) promotes late steps of retrotranslocation by recruiting the energy-providing ATPase Cdc48p/p97 via binding to its associated adaptor proteins and that (2) serves to target substrates to the proteasome. Recently it became evident, however, that the poly-ubiquitin chains (PUCs) on ERAD substrates are often subject to extensive remodeling, or processing, at several stages during ERAD. This review recapitulates the current knowledge and recent findings about PUC processing on ERAD substrates and ubiquitination of ERAD machinery components and discusses their functional consequences.

14.
Curr Protein Pept Sci ; 13(5): 425-35, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22812526

RESUMEN

In the secretory pathway, quality control for the correct folding of proteins is largely occurring in the endoplasmic reticulum (ER), at the earliest possible stage and in an environment where early folding intermediates mix with terminally misfolded species. An elaborate cellular mechanism aims at dividing the former from the latter and promotes the selective transport of misfolded species back into the cytosol, a step called retrotranslocation. During retrotranslocation proteins will become ubiquitinated on the cytosolic side of the ER membrane by dedicated machineries and will be targeted to the proteasome for degradation. The entire process, from protein recognition to final degradation, has been named ER-associated protein degradation, or simply ERAD. Ubiquitin has well known functions in aiding late steps of substrate retrotranslocation and in targeting substrates to the proteasome. Recent results show that several cytosolic machineries allow ubiquitinated substrates to undergo extensive remodeling, or processing, on their poly-ubiquitin chains (PUCs). Although still ill-defined, PUC processing might have a unique function for ERAD in that it might provide a mechanism to generate optimal PUCs for recognition by proteasomal ubiquitin receptors. Ubiquitination might also have a previously unanticipated role in quality control of ER membrane proteins. This review recapitulates the current knowledge and recent findings about ERAD-specific roles of ubiquitin.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteolisis , Ubiquitina/metabolismo , Animales , Humanos , Ubiquitinación
15.
J Cell Sci ; 124(Pt 1): 144-53, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21147851

RESUMEN

In eukaryotic cells, proteins enter the secretory pathway at the endoplasmic reticulum (ER) as linear polypeptides and fold after translocation across or insertion into the membrane. If correct folding fails, many proteins are O-mannosylated inside the ER by an O-mannosyltransferase, the Pmt1p-Pmt2p complex. The consequences of this modification are controversial and the cellular role of the Pmt1p-Pmt2p complex in this respect is unclear. Here, we have identified the binding partners of yeast Pmt1p and Pmt2p. These include ER chaperones involved in oxidative protein folding; the Hrd1p complex, which is involved in ER-associated protein degradation (ERAD); and the p24 protein complex involved in ER export. The results suggest that the Pmt1p-Pmt2p complex participates in these processes. We tested this assumption in a functional assay and found that whereas the Pmt1p-Pmt2p complex promotes fast ER export of the GPI-anchored protein Gas1p, it retains the misfolded version Gas1*p and targets it to the Hrd1p complex for subsequent degradation. Our results reveal previously unknown cellular roles of the Pmt1p-Pmt2p complex in connection with the ERAD machinery and show its participation in ER protein quality control.


Asunto(s)
Retículo Endoplásmico/metabolismo , Manosiltransferasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Manosiltransferasas/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Unión Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
FEBS Lett ; 582(11): 1575-80, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18407841

RESUMEN

Misfolded proteins in the endoplasmic reticulum (ER) are often degraded in the cytosol by a process called ER-associated protein degradation (ERAD). During ERAD in S. cerevisiae, the ATPase Cdc48p associates with Der1p, a putative component of a retro-translocation channel. Cdc48p also binds a homolog of Der1p, Dfm1p, that has no known function in ERAD. Here, we show that Der1p and Dfm1p are contained in distinct complexes. While the complexes share several ERAD components, only the Dfm1p complex contains the Cdc48p cofactors Ubx1p and Ubx7p, while the Der1p complex is enriched in Ufd1p. These data suggest distinct functions for the Der1p and Dfm1p complexes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplásmico/enzimología , Proteínas de la Membrana/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Coenzimas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/análisis , Complejos Multienzimáticos/química , Proteínas de Saccharomyces cerevisiae/análisis , Proteína que Contiene Valosina , Proteínas de Transporte Vesicular
17.
J Biol Chem ; 282(45): 33201-9, 2007 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17893139

RESUMEN

The orientation of most single-spanning membrane proteins obeys the "positive-inside rule", i.e. the flanking region of the transmembrane segment that is more positively charged remains in the cytosol. These membrane proteins are integrated by the Sec61/SecY translocon, but how their orientation is achieved is unknown. We have screened for mutations in yeast Sec61p that alter the orientation of single-spanning membrane proteins. We identified a class of mutants that are less efficient in retaining the positively charged flanking region in the cytosol. Surprisingly, these mutations are located at many different sites in the Sec61/SecY molecule, and they do not only involve charged amino acid residues. All these mutants have a prl phenotype that so far have only been seen in bacteria; they allow proteins with defective signal sequences to be translocated, likely because the Sec61p channel opens more easily. A similar correlation between topology defects and prl phenotype was also seen with previously identified yeast Sec61 mutants. Our results suggest a model in which the regulated opening of the translocon is required for the faithful orientation of membrane proteins.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Señales de Clasificación de Proteína/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Estructura Terciaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
18.
Cell ; 126(2): 361-73, 2006 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16873066

RESUMEN

Many misfolded endoplasmic reticulum (ER) proteins are eliminated by ERAD, a process in which substrates are polyubiquitylated and moved into the cytosol for proteasomal degradation. We have identified in S. cerevisiae distinct ubiquitin-ligase complexes that define different ERAD pathways. Proteins with misfolded ER-luminal domains use the ERAD-L pathway, in which the Hrd1p/Hrd3p ligase forms a near stoichiometric membrane core complex by binding to Der1p via the linker protein Usa1p. This core complex associates through Hrd3p with Yos9p, a substrate recognition protein in the ER lumen. Substrates with misfolded intramembrane domains define a pathway (ERAD-M) that differs from ERAD-L by being independent of Usa1p and Der1p. Membrane proteins with misfolded cytosolic domains use the ERAD-C pathway and are directly targeted to the Doa10p ubiquitin ligase. All three pathways converge at the Cdc48p ATPase complex. These results lead to a unifying concept for ERAD that may also apply to mammalian cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Ligasas/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Pliegue de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina
19.
Mol Biol Cell ; 17(9): 4063-8, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16822836

RESUMEN

The Sec61/SecY translocon mediates translocation of proteins across the membrane and integration of membrane proteins into the lipid bilayer. The structure of the translocon revealed a plug domain blocking the pore on the lumenal side. It was proposed to be important for gating the protein conducting channel and for maintaining the permeability barrier in its unoccupied state. Here, we analyzed in yeast the effect of introducing destabilizing point mutations in the plug domain or of its partial or complete deletion. Unexpectedly, even when the entire plug domain was deleted, cells were viable without growth phenotype. They showed an effect on signal sequence orientation of diagnostic signal-anchor proteins, a minor defect in cotranslational and a significant deficiency in posttranslational translocation. Steady-state levels of the mutant protein were reduced, and when coexpressed with wild-type Sec61p, the mutant lacking the plug competed poorly for complex partners. The results suggest that the plug is unlikely to be important for sealing the translocation pore in yeast but that it plays a role in stabilizing Sec61p during translocon formation.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Supervivencia Celular , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Eliminación de Secuencia
20.
Trends Cell Biol ; 14(10): 568-75, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15450979

RESUMEN

Most eukaryotic membrane proteins are integrated into the lipid bilayer during their synthesis at the endoplasmic reticulum (ER). Their integration occurs with the help of a protein-conducting channel formed by the heterotrimeric Sec61 membrane-protein complex. The crystal structure of an archaeal homolog of the complex suggests mechanisms that enable the channel to open across the membrane and to release laterally hydrophobic transmembrane segments of nascent membrane proteins into lipid. Many aspects of membrane-protein integration remain controversial and poorly understood, but new structural data provide testable hypotheses. We propose a model of how the channel recognizes transmembrane segments, orients them properly with respect to the plane of the membrane and releases them into lipid. We also discuss how the channel would prevent small molecules from crossing the lipid bilayer while it is integrating proteins.


Asunto(s)
Activación del Canal Iónico/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Animales , Membrana Celular/metabolismo , Membrana Celular/fisiología , Humanos , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Unión Proteica/fisiología , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...