Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Front Physiol ; 15: 1395371, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258111

RESUMEN

Introduction: Cardiovascular disease (CVD) is responsible for over 30% of mortality worldwide. CVD arises from the complex influence of molecular, clinical, social, and environmental factors. Despite the growing number of autosomal genetic variants contributing to CVD, the cause of most CVDs is still unclear. Mitochondria are crucial in the pathophysiology, development and progression of CVDs; the impact of mitochondrial DNA (mtDNA) variants and mitochondrial haplogroups in the context of CVD has recently been highlighted. Aims: We investigated the role of genetic variants in both mtDNA and nuclear-encoded mitochondrial genes (NEMG) in CVD, including coronary artery disease (CAD), hypertension, and serum lipids in the UK Biobank, with sub-group analysis for diabetes. Methods: We investigated 371,542 variants in 2,527 NEMG, along with 192 variants in 32 mitochondrial genes in 381,994 participants of the UK Biobank, stratifying by presence of diabetes. Results: Mitochondrial variants showed associations with CVD, hypertension, and serum lipids. Mitochondrial haplogroup J was associated with CAD and serum lipids, whereas mitochondrial haplogroups T and U were associated with CVD. Among NEMG, variants within Nitric Oxide Synthase 3 (NOS3) showed associations with CVD, CAD, hypertension, as well as diastolic and systolic blood pressure. We also identified Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) variants associated with CAD; Solute carrier family 22 member 2 (SLC22A2) variants associated with CAD and CVD; and HLA-DQA1 variants associated with hypertension. Variants within these three genes were also associated with serum lipids. Conclusion: Our study demonstrates the relevance of mitochondrial related variants in the context of CVD. We have linked mitochondrial haplogroup U to CVD, confirmed association of mitochondrial haplogroups J and T with CVD and proposed new markers of hypertension and serum lipids in the context of diabetes. We have also evidenced connections between the etiological pathways underlying CVDs, blood pressure and serum lipids, placing NOS3, SLC22A2, TOMM40 and HLA-DQA1 genes as common nexuses.

2.
Inflamm Res ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214890

RESUMEN

INTRODUCTION: Influenza A is a virus from the Orthomixoviridae family responsible for high lethality rates and morbidity, despite clinically proven vaccination strategies and some anti-viral therapies. The eicosanoid Lipoxin A4 (LXA4) promotes the resolution of inflammation by decreasing cell recruitment and pro-inflammatory cytokines release, but also for inducing activation of apoptosis, efferocytosis, and macrophage reprogramming. OBJECTIVE: Here, we evaluated whether a synthetic lipoxin mimetic, designated AT-01-KG, would improve the course of influenza A infection in a murine model. METHOD: Mice were infected with influenza A/H1N1 and treated with AT-01-KG (1.7 µg/kg/day, i.p.) at day 3 post-infection. RESULTS: AT-01-KG attenuated mortality, reducing leukocyte infiltration and lung damage at day 5 and day 7 post-infection. AT-01-KG is a Formyl Peptide Receptor 2 (designated FPR2/3 in mice) agonist, and the protective responses were not observed in fpr2/3 -/- animals. In mice treated with LXA4 (50 µg/kg/day, i.p., days 3-6 post-infection), at day 7, macrophage reprogramming was observed, as seen by a decrease in classically activated macrophages and an increase in alternatively activated macrophages in the lungs. Furthermore, the number of apoptotic cells and cells undergoing efferocytosis was increased in the lavage of treated mice. Treatment also modulated the adaptive immune response, increasing the number of T helper 2 cells (Th2) and regulatory T (Tregs) cells in the lungs of the treated mice. CONCLUSION: Therefore, treatment with a lipoxin A4 analog was beneficial in a model of influenza A infection in mice. The drug decreased inflammation and promoted resolution and beneficial immune responses, suggesting it may be useful in patients with severe influenza.

3.
Res Sq ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38947034

RESUMEN

Objective and design: Here, we evaluated whether a synthetic lipoxin mimetic, designated AT-01-KG, would improve the course of influenza A infection in a murine model. Treatment: Mice were infected with influenza A/H1N1 and treated with AT-01-KG (1.7 mg/kg/day, i.p.) at day 3 post-infection. Methods: Mortality rate was assessed up to day 21 and inflammatory parameters were assessed at days 5 and 7. Results: AT-01-KG attenuated mortality, reducing leukocyte infiltration and lung damage at day 5 and day 7 post-infection. AT-01-KG is a Formyl Peptide Receptor 2 (designated FPR2/3 in mice) agonist, and the protective responses were not observed in FPR2/3 -/- animals. In mice treated with LXA4 (50mg/kg/day, i.p., days 3-6 post-infection), at day 7, macrophage reprogramming was observed, as seen by a decrease in classically activated macrophages and an increase in alternatively activated macrophages in the lungs. Furthermore, the number of apoptotic cells and cells undergoing efferocytosis was increased in the lavage of treated mice. Treatment also modulated the adaptive immune response, increasing the number of anti-inflammatory T cells (Th2) and regulatory T (Tregs) cells in the lungs of the treated mice. Conclusions: Therefore, treatment with a lipoxin A4 analog was beneficial in a model of influenza A infection in mice. The drug decreased inflammation and promoted resolution and beneficial immune responses, suggesting it may be useful in patients with severe influenza.

4.
BMC Genomics ; 25(1): 576, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858654

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS: We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS: Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS: We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.


Asunto(s)
Mitocondrias , Humanos , Masculino , Mitocondrias/genética , Femenino , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Tasa de Filtración Glomerular , Variación Genética , Haplotipos , Insuficiencia Renal Crónica/genética , ADN Mitocondrial/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/complicaciones , Polimorfismo de Nucleótido Simple , Adulto , Anciano
5.
J Immunol ; 212(12): 1958-1970, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700420

RESUMEN

Fibroblasts acquire a proinflammatory phenotype in inflammatory bowel disease, but the factors driving this process and how fibroblasts contribute to mucosal immune responses are incompletely understood. TNF superfamily member 12 (TNFSF12, or TNF-like weak inducer of apoptosis [TWEAK]) has gained interest as a mediator of chronic inflammation. In this study, we explore its role as a driver of inflammatory responses in fibroblasts and its contribution to fibroblast-monocyte interaction using human primary colonic fibroblasts, THP-1 and primary monocytes. Recombinant human TWEAK induced the expression of cytokines, chemokines, and immune receptors in primary colonic fibroblasts. The TWEAK upregulated transcriptome shared 29% homology with a previously published transcriptional profile of inflammatory fibroblasts from ulcerative colitis. TWEAK elevated surface expression of activated fibroblast markers and adhesion molecules (podoplanin [PDPN], ICAM-1, and VCAM-1) and secretion of IL-6, CCL2, and CXCL10. In coculture, fibroblasts induced monocyte adhesion and secretion of CXCL1 and IL-8, and they promoted a CD14high/ICAM-1high phenotype in THP-1 cells, which was enhanced when fibroblasts were prestimulated with TWEAK. Primary monocytes in coculture with TWEAK-treated fibroblasts had altered surface expression of CD16 and triggering receptor expressed on myeloid cells-1 (TREM-1) as well as increased CXCL1 and CXCL10 secretion. Conversely, inhibition of the noncanonical NF-κB pathway on colonic fibroblasts with a NF-κB-inducing kinase small molecule inhibitor impaired their ability to induce a CD14high phenotype on monocytes. Our results indicate that TWEAK promotes an inflammatory fibroblast-monocyte crosstalk that may be amenable for therapeutic intervention.


Asunto(s)
Diferenciación Celular , Colon , Citocina TWEAK , Fibroblastos , Monocitos , Humanos , Citocina TWEAK/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Fibroblastos/metabolismo , Fibroblastos/inmunología , Colon/inmunología , Colon/patología , Colon/metabolismo , Diferenciación Celular/inmunología , Comunicación Celular/inmunología , Inflamación/inmunología , Células THP-1 , Técnicas de Cocultivo , Citocinas/metabolismo , Adhesión Celular
6.
Atherosclerosis ; 395: 117573, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38796407

RESUMEN

BACKGROUND AND AIMS: Activation of vascular smooth muscle cell inflammation is recognised as an important early driver of vascular disease. We have previously identified the let-7 miRNA family as important regulators of inflammation in in vitro and in vivo models of atherosclerosis. Here we investigated a dual statin/let-7d-5p miRNA combination therapy approach to target human aortic SMC (HAoSMC) activation and inflammation. METHODS: In vitro studies using primary HAoSMCs were performed to investigate the effects of let-7d-5p miRNA overexpression and inhibition. HAoSMCs were treated with combinations of the inflammatory cytokine tumor necrosis factor-α (TNF-α), and atorvastatin or lovastatin. HAoSMC Bulk RNA-seq transcriptomics of HAoSMCs revealed downstream regulatory networks modulated by let-7d-5p miRNA overexpression and statins. Proteome profiler cytokine array, Western blotting and quantitative PCR analyses were performed on HAoSMCs to validate key findings. RESULTS: Let-7d-5p overexpression significantly attenuated TNF-α-induced upregulation of IL-6, ICAM1, VCAM1, CCL2, CD68, MYOCD gene expression in HAoSMCs (p<0.05). Statins (atorvastatin, lovastatin) significantly attenuated inflammatory gene expression and upregulated Let-7d levels in HAoSMCs (p<0.05). Bulk RNA-seq analysis of a dual Let-7d-5p overexpression/statin therapy in HAoSMCs revealed that let-7d-5p activation and statins converge on key inflammatory pathways (IL-6, IL-1ß, TNF-α, IFN-γ). Let-7d-5p overexpression led to reduced expression of the ox-LDL receptor OLR1, and this was associated with lower ox-LDL uptake in HAoSMCs. In silico analysis of smooth muscle cell phenotypic switching shows that overexpression of let-7d-5p in HAoSMCs maintains a contractile phenotype. CONCLUSIONS: Targeting the Let-7 network alongside statins can modulate HAoSMC activation and attenuate key inflammatory pathway signals.


Asunto(s)
Aorta , Atorvastatina , Inhibidores de Hidroximetilglutaril-CoA Reductasas , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , Fenotipo , Transducción de Señal , MicroARNs/metabolismo , MicroARNs/genética , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Atorvastatina/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Células Cultivadas , Factor de Necrosis Tumoral alfa/metabolismo , Inflamación/metabolismo , Inflamación/genética , Lovastatina/farmacología , Mediadores de Inflamación/metabolismo , Regulación de la Expresión Génica , Citocinas/metabolismo
7.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446387

RESUMEN

Increased albuminuria indicates underlying glomerular pathology and is associated with worse renal disease outcomes, especially in diabetic kidney disease. Many single nucleotide polymorphisms (SNPs), associated with albuminuria, could be potentially useful to construct polygenic risk scores (PRSs) for kidney disease. We investigated the diagnostic accuracy of SNPs, previously associated with albuminuria-related traits, on albuminuria and renal injury in the UK Biobank population, with a particular interest in diabetes. Multivariable logistic regression was used to evaluate the influence of 91 SNPs on urine albumin-to-creatinine ratio (UACR)-related traits and kidney damage (any pathology indicating renal injury), stratifying by diabetes. Weighted PRSs for microalbuminuria and UACR from previous studies were used to calculate the area under the receiver operating characteristic curve (AUROC). CUBN-rs1801239 and DDR1-rs116772905 were associated with all the UACR-derived phenotypes, in both the overall and non-diabetic cohorts, but not with kidney damage. Several SNPs demonstrated different effects in individuals with diabetes compared to those without. SNPs did not improve the AUROC over currently used clinical variables. Many SNPs are associated with UACR or renal injury, suggesting a role in kidney dysfunction, dependent on the presence of diabetes in some cases. However, individual SNPs or PRSs did not improve the diagnostic accuracy for albuminuria or renal injury compared to standard clinical variables.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Albuminuria/orina , Bancos de Muestras Biológicas , Biomarcadores/orina , Reino Unido , Creatinina/orina , Tasa de Filtración Glomerular
8.
Annu Rev Pharmacol Toxicol ; 63: 429-448, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662584

RESUMEN

Inflammation and its timely resolution are critical to ensure effective host defense and appropriate tissue repair after injury and or infection. Chronic, unresolved inflammation typifies many prevalent pathologies. The key mediators that initiate and drive the inflammatory response are well defined and targeted by conventional anti-inflammatory therapeutics. More recently, there is a growing appreciation that specific mediators, including arachidonate-derived lipoxins, are generated in self-limiting inflammatory responses to promote the resolution of inflammation and endogenous repair mechanisms without compromising host defense. We discuss the proresolving biological actions of lipoxins and recent efforts to harness their therapeutic potential through the development of novel, potent lipoxin mimetics generated via efficient, modular stereoselective synthetic pathways. We consider the evidence that lipoxin mimetics may have applications in limiting inflammation and reversing fibrosis and the underlying mechanisms.


Asunto(s)
Lipoxinas , Humanos , Lipoxinas/farmacología , Lipoxinas/uso terapéutico , Lipoxinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Ácidos Araquidónicos
9.
Nat Commun ; 13(1): 7891, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550108

RESUMEN

Type 1 diabetes affects over nine million individuals globally, with approximately 40% developing diabetic kidney disease. Emerging evidence suggests that epigenetic alterations, such as DNA methylation, are involved in diabetic kidney disease. Here we assess differences in blood-derived genome-wide DNA methylation associated with diabetic kidney disease in 1304 carefully characterised individuals with type 1 diabetes and known renal status from two cohorts in the United Kingdom-Republic of Ireland and Finland. In the meta-analysis, we identify 32 differentially methylated CpGs in diabetic kidney disease in type 1 diabetes, 18 of which are located within genes differentially expressed in kidneys or correlated with pathological traits in diabetic kidney disease. We show that methylation at 21 of the 32 CpGs predict the development of kidney failure, extending the knowledge and potentially identifying individuals at greater risk for diabetic kidney disease in type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Humanos , Metilación de ADN/genética , Epigenoma , Nefropatías Diabéticas/genética , Epigénesis Genética , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Biomarcadores , ADN , Estudio de Asociación del Genoma Completo , Islas de CpG
10.
Clin Sci (Lond) ; 136(21): 1485-1511, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36259366

RESUMEN

The attenuation of diabetic kidney disease (DKD) by metabolic surgery is enhanced by pharmacotherapy promoting renal fatty acid oxidation (FAO). Using the Zucker Diabetic Fatty and Zucker Diabetic Sprague Dawley rat models of DKD, we conducted studies to determine if these effects could be replicated with a non-invasive bariatric mimetic intervention. Metabolic control and renal injury were compared in rats undergoing a dietary restriction plus medical therapy protocol (DMT; fenofibrate, liraglutide, metformin, ramipril, and rosuvastatin) and ad libitum-fed controls. The global renal cortical transcriptome and urinary 1H-NMR metabolomic profiles were also compared. Kidney cell type-specific and medication-specific transcriptomic responses were explored through in silico deconvolution. Transcriptomic and metabolomic correlates of improvements in kidney structure were defined using a molecular morphometric approach. The DMT protocol led to ∼20% weight loss, normalized metabolic parameters and was associated with reductions in indices of glomerular and proximal tubular injury. The transcriptomic response to DMT was dominated by changes in fenofibrate- and peroxisome proliferator-activated receptor-α (PPARα)-governed peroxisomal and mitochondrial FAO transcripts localizing to the proximal tubule. DMT induced urinary excretion of PPARα-regulated metabolites involved in nicotinamide metabolism and reversed DKD-associated changes in the urinary excretion of tricarboxylic acid (TCA) cycle intermediates. FAO transcripts and urinary nicotinamide and TCA cycle metabolites were moderately to strongly correlated with improvements in glomerular and proximal tubular injury. Weight loss plus pharmacological PPARα agonism is a promising means of attenuating DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Fenofibrato , Ratas , Masculino , Animales , PPAR alfa/genética , PPAR alfa/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Fenofibrato/farmacología , Fenofibrato/metabolismo , Ratas Zucker , Ratas Sprague-Dawley , Riñón/metabolismo , Pérdida de Peso , Niacinamida , Diabetes Mellitus/metabolismo
11.
Org Lett ; 24(32): 6049-6053, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35938947

RESUMEN

Lipoxins are important drivers of inflammation resolution, suggesting a potential therapeutic benefit. Bicyclo[1.1.1]pentanes (BCPs) are potential isosteric replacements for arenes and/or alkyl groups within drug candidates. We carried out an asymmetric synthesis of four BCP-containing synthetic lipoxin A4 mimetics (BCP-sLXms) in which the key steps were a Suzuki coupling, an asymmetric ketone reduction, and a triethylborane-initiated radical bicyclopentylation. These mimetics were screened for their impact on inflammatory responses, and one imidazolo-BCP-sLXm (6a) was found to possess high anti-inflammatory activity.


Asunto(s)
Lipoxinas , Antiinflamatorios , Humanos , Inflamación , Lipoxinas/farmacología , Pentanos
12.
Br J Pharmacol ; 179(19): 4617-4639, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35797341

RESUMEN

We discuss the fascinating pharmacology of formylpeptide receptor 2 (FPR2; often referred to as FPR2/ALX since it binds lipoxin A4 ). Initially identified as a low-affinity 'relative' of FPR1, FPR2 presents complex and diverse biology. For instance, it is activated by several classes of agonists (from peptides to proteins and lipid mediators) and displays diverse expression patterns on myeloid cells as well as epithelial cells and endothelial cells, to name a few. Over the last decade, the pharmacology of FPR2 has progressed from being considered a weak chemotactic receptor to a master-regulator of the resolution of inflammation, the second phase of the acute inflammatory response. We propose that exploitation of the biology of FPR2 offers innovative ways to rectify chronic inflammatory states and represents a viable avenue to develop novel therapies. Recent elucidation of FPR2 structure will facilitate development of the anti-inflammatory and pro-resolving drugs of next decade.


Asunto(s)
Lipoxinas , Receptores de Lipoxina , Células Endoteliales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipoxinas/farmacología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
13.
Diabetologia ; 65(9): 1495-1509, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35763030

RESUMEN

AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. METHODS: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. RESULTS: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10-9; although not withstanding correction for multiple testing, p>9.3×10-9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, LSM14A and MFF; p<2.7×10-6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10-6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10-11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10-8] and negatively with tubulointerstitial fibrosis [p=2.0×10-9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10-16], and SNX30 expression correlated positively with eGFR [p=5.8×10-14] and negatively with fibrosis [p<2.0×10-16]). CONCLUSIONS/INTERPRETATION: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. DATA AVAILABILITY: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/metabolismo , Quinasas Similares a Doblecortina , Fibrosis , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón/metabolismo , Polimorfismo de Nucleótido Simple/genética , Proteínas Serina-Treonina Quinasas/genética
14.
Adv Drug Deliv Rev ; 178: 113965, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34508793

RESUMEN

Renal microvascular disease associated with diabetes [Diabetic kidney disease - DKD] is the leading cause of chronic kidney disease. In DKD, glomerular basement membrane thickening, mesangial expansion, endothelial dysfunction, podocyte cell loss and renal tubule injury contribute to progressive glomerulosclerosis and tubulointerstitial fibrosis. Chronic inflammation is recognized as a major pathogenic mechanism for DKD, with resident and circulating immune cells interacting with local kidney cell populations to provoke an inflammatory response. The onset of inflammation is driven by the release of well described proinflammatory mediators, and this is typically followed by a resolution phase. Inflammation resolution is achieved through the bioactions of endogenous specialized pro-resolving lipid mediators (SPMs). As our understanding of SPMs advances 'resolution pharmacology' based approaches using these molecules are being explored in DKD.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Mediadores de Inflamación/uso terapéutico , Inflamación/tratamiento farmacológico , Lípidos/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Humanos , Mediadores de Inflamación/química , Lípidos/química
15.
Nat Rev Nephrol ; 17(11): 725-739, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34282342

RESUMEN

Obesity, diabetes mellitus, hypertension and cardiovascular disease are risk factors for chronic kidney disease (CKD) and kidney failure. Chronic, low-grade inflammation is recognized as a major pathogenic mechanism that underlies the association between CKD and obesity, impaired glucose tolerance, insulin resistance and diabetes, through interaction between resident and/or circulating immune cells with parenchymal cells. Thus, considerable interest exists in approaches that target inflammation as a strategy to manage CKD. The initial phase of the inflammatory response to injury or metabolic dysfunction reflects the release of pro-inflammatory mediators including peptides, lipids and cytokines, and the recruitment of leukocytes. In self-limiting inflammation, the evolving inflammatory response is coupled to distinct processes that promote the resolution of inflammation and restore homeostasis. The discovery of endogenously generated lipid mediators - specialized pro-resolving lipid mediators and branched fatty acid esters of hydroxy fatty acids - which promote the resolution of inflammation and attenuate the microvascular and macrovascular complications of obesity and diabetes mellitus highlights novel opportunities for potential therapeutic intervention through the targeting of pro-resolution, rather than anti-inflammatory pathways.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Riñón/metabolismo , Metabolismo de los Lípidos , Lípidos , Insuficiencia Renal Crónica/metabolismo , Diabetes Mellitus/metabolismo , Angiopatías Diabéticas/metabolismo , Humanos , Obesidad/metabolismo
16.
J Med Chem ; 64(13): 9193-9216, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34138563

RESUMEN

Failure to resolve inflammation underlies many prevalent pathologies. Recent insights have identified lipid mediators, typified by lipoxins (LXs), as drivers of inflammation resolution, suggesting potential therapeutic benefit. We report the asymmetric preparation of novel quinoxaline-containing synthetic-LXA4-mimetics (QNX-sLXms). Eight novel compounds were screened for their impact on inflammatory responses. Structure-activity relationship (SAR) studies showed that (R)-6 (also referred to as AT-02-CT) was the most efficacious and potent anti-inflammatory compound of those tested. (R)-6 significantly attenuated lipopolysaccharide (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced NF-κB activity in monocytes and vascular smooth muscle cells. The molecular target of (R)-6 was investigated. (R)-6 activated the endogenous LX receptor formyl peptide receptor 2 (ALX/FPR2). The anti-inflammatory properties of (R)-6 were further investigated in vivo in murine models of acute inflammation. Consistent with in vitro observations, (R)-6 attenuated inflammatory responses. These results support the therapeutic potential of the lead QNX-sLXm (R)-6 in the context of novel inflammatory regulators.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Quinoxalinas/farmacología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Estructura Molecular , Monocitos/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Quinoxalinas/síntesis química , Quinoxalinas/química , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
17.
J Extracell Vesicles ; 10(6): 12084, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33936566

RESUMEN

Extracellular vesicles (EVs) are emerging as key players in different stages of atherosclerosis. Here we provide evidence that EVs released by mixed aggregates of monocytes and platelets in response to TNF-α display pro-inflammatory actions on endothelial cells and atherosclerotic plaques. Tempering platelet activation with Iloprost, Aspirin or a P2Y12 inhibitor impacted quantity and phenotype of EV produced. Proteomics of EVs from cells activated with TNF-α alone or in the presence of Iloprost revealed a distinct composition, with interesting hits like annexin-A1 and gelsolin. When added to human atherosclerotic plaque explants, EVs from TNF-α stimulated monocytes augmented release of cytokines. In contrast, EVs generated by TNF-α together with Iloprost produced minimal plaque activation. Notably, patients with coronary artery disease that required percutaneous coronary intervention had elevated plasma numbers of monocyte, platelet as well as double positive EV subsets. In conclusion, EVs released following monocyte/platelet activation may play a potential role in the development and progression of atherosclerosis. Whereas attenuating platelet activation modifies EV composition released from monocyte/platelet aggregates, curbing their pro-inflammatory actions may offer therapeutic avenues for the treatment of atherosclerosis.


Asunto(s)
Vesículas Extracelulares/fisiología , Monocitos/fisiología , Placa Aterosclerótica/fisiopatología , Agregación Plaquetaria/fisiología , Aspirina/farmacología , Aterosclerosis/fisiopatología , Plaquetas/citología , Plaquetas/efectos de los fármacos , Citocinas , Células Endoteliales/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Voluntarios Sanos , Humanos , Inflamación/inmunología , Monocitos/citología , Activación Plaquetaria/efectos de los fármacos , Factor de Necrosis Tumoral alfa
18.
Artículo en Inglés | MEDLINE | ID: mdl-33839296

RESUMEN

Inflammation and its timely resolution are critical to ensuring effective host defence and appropriate tissue repair after injury. Unresolved inflammation typifies many renal pathologies. The key drivers of the inflammatory response are well defined and targeted by conventional anti-inflammatory therapeutics. However, these are associated with undesirable side effects including immune suppression. More recently, there is growing appreciation that specialized lipid mediators [SPMs] including lipoxins promote the resolution of inflammation and endogenous repair mechanisms without compromising host defence. We discuss the pro-resolving bioactions of lipoxins and recent work that aims to harness their therapeutic potential in the context of kidney disease.


Asunto(s)
Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/farmacología , Enfermedades Renales/tratamiento farmacológico , Lipoxinas/metabolismo , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/uso terapéutico , Humanos
19.
Eur J Med Chem ; 213: 113167, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33486199

RESUMEN

Under physiological conditions the initiation, duration and amplitude of inflammatory responses are tightly regulated to ensure the restoration of homeostasis. The resolution of inflammation in these circumstances is dictated by responses to endogenously generated mediators. Mimicry of such mediators underpins the principle of promoting the resolution of inflammation in treating inflammatory pathologies. The formyl peptide receptor 2 (FPR2/ALX) is a G-protein coupled receptor known to play a crucial role in maintaining host defence and orchestrating the inflammatory process. FPR2/ALX can be activated by a wide range of distinct agonists, including lipids, proteins, peptides, and an array of synthetic small molecule agonists. The focus of this review is to provide a comprehensive overview of recent progress made in the development of FPR2/ALX agonists which promote resolution and tissue regeneration.


Asunto(s)
Antiinflamatorios/farmacología , Desarrollo de Medicamentos , Inflamación/tratamiento farmacológico , Receptores de Formil Péptido/agonistas , Receptores de Lipoxina/agonistas , Animales , Antiinflamatorios/química , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/metabolismo , Inflamación/patología , Estructura Molecular , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Relación Estructura-Actividad
20.
Pharmacol Res ; 165: 105445, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33493655

RESUMEN

The resolution of inflammation is a dynamic process, characterized by the biosynthesis of pro-resolving mediators, including the lipid Lipoxin A4 (LXA4). LXA4 acts on the N-formyl peptide receptor 2 (FPR2/ALX) to mediate anti-inflammatory and pro-resolving effects. In order to exploit the therapeutic potential of endogenous LXA4 in the context of inflammation we have recently developed synthetic LXA4 mimetics (sLXms) including a dimethyl-imidazole-containing FPR2/ALX agonist designated AT-01-KG. Here, we have investigated the effect of treatment with AT-01-KG in established models of articular inflammation. In a model of gout, mice were injected with MSU crystals and treated with AT-01-KG at the peak of inflammatory response. The treatment decreased the number of neutrophils in the knee exudate, an effect which was accompanied by low levels of myeloperoxidase, CXCL1 and IL-1ß in periarticular tissue. AT-01-KG treatment led to reduced tissue damage and hypernociception. The effects of AT-01-KG on neutrophil accumulation were not observed in MSU treated FPR2/3-/-mice. Importantly, AT-01-KG induced resolution of articular inflammation by increasing neutrophil apoptosis and subsequent efficient efferocytosis. In a model of antigen-induced arthritis, AT-01-KG treatment also attenuated inflammatory responses. These data suggest that AT-01-KG may be a potential new therapy for neutrophilic inflammation of the joints.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Supresores de la Gota/administración & dosificación , Gota/tratamiento farmacológico , Receptores de Formil Péptido/agonistas , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Relación Dosis-Respuesta a Droga , Gota/metabolismo , Gota/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Inyecciones Intraarticulares/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Formil Péptido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA