Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38045270

RESUMEN

Membrane-associated heparan sulfate (HS) proteoglycans (PGs) contribute to the regulation of extracellular cellular signaling cues, such as growth factors (GFs) and chemokines, essential for normal organismal functions and implicated in various pathophysiologies. PGs accomplish this by presenting high affinity binding sites for GFs and their receptors through highly sulfated regions of their HS polysaccharide chains. The composition of HS, and thus GF-binding specificity, are determined during biosynthetic assembly prior to installation at the cell surface. Two extracellular 6- O -endosulfatase enzymes (Sulf-1 and Sulf-2) can uniquely further edit mature HS and alter its interactions with GFs by removing specific sulfation motifs from their recognition sequence on HS. Despite being implicated as signaling regulators during development and in disease, the Sulfs have resisted structural characterization, and their substrate specificity and effects on GF interactions with HS are still poorly defined. Using a panel of PG-mimetics comprising compositionally-defined bioengineered recombinant HS (rHS) substrates in combination with GF binding and enzyme activity assays, we have discovered that Sulfs control GF-HS interactions through a combination of catalytic processing and competitive blocking of high affinity GF-binding sites, providing a new conceptual framework for understanding the functional impact of these enzymes in biological context. Although the contributions from each mechanism are both Sulf- and GF-dependent, the PG-mimetic platform allows for rapid analysis of these complex relationships. Significance Statement: Cells rely on extracellular signals such as growth factors (GFs) to mediate critical biological functions. Membrane-associated proteins bearing negatively charged heparan sulfate (HS) sugar chains engage with GFs and present them to their receptors, which regulates their activity. Two extracellular sulfatase (Sulf) enzymes can edit HS and alter GF interactions and activity, although the precise mechanisms remain unclear. By using chemically defined HS-mimetics as probes, we have discovered that Sulfs can modulate HS by means of catalytic alterations and competitive blocking of GF-binding sites. These unique dual activities distinguish Sulfs from other enzymes and provide clues to their roles in development and disease.

2.
J Biol Chem ; 299(5): 104611, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931394

RESUMEN

Adipose tissue plays a crucial role in maintaining metabolic homeostasis by storing lipids and glucose from circulation as intracellular fat. As peripheral tissues like adipose tissue become insulin resistant, decompensation of blood glucose levels occurs causing type 2 diabetes (T2D). Currently, modulating the glycocalyx, a layer of cell-surface glycans, is an underexplored pharmacological treatment strategy to improve glucose homeostasis in T2D patients. Here, we show a novel role for cell-surface heparan sulfate (HS) in establishing glucose uptake capacity and metabolic utilization in differentiated adipocytes. Using a combination of chemical and genetic interventions, we identified that HS modulates this metabolic phenotype by attenuating levels of Wnt signaling during adipogenesis. By engineering, the glycocalyx of pre-adipocytes with exogenous synthetic HS mimetics, we were able to enhance glucose clearance capacity after differentiation through modulation of Wnt ligand availability. These findings establish the cellular glycocalyx as a possible new target for therapeutic intervention in T2D patients by enhancing glucose clearance capacity independent of insulin secretion.


Asunto(s)
Adipogénesis , Diabetes Mellitus Tipo 2 , Humanos , Adipogénesis/genética , Glicocálix/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Heparitina Sulfato , Glucosa/metabolismo
3.
Chem Sci ; 13(22): 6626-6635, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35756522

RESUMEN

The cellular glycocalyx, composed of membrane associated glycoproteins and glycolipids, is a complex and dynamic interface that facilitates interactions between cells and their environment. The glycocalyx composition is continuously changing through biosynthesis of new glycoconjugates and membrane turnover. Various glycocalyx components, such as mucins, can also be rapidly shed from the cell surface in response to acute events, such as pathogenic threat. Mucins, which are large extended glycoproteins, deliver important protective functions against infection by creating a physical barrier at the cell surface and by capturing and clearing pathogens through shedding. Evaluating these mucin functions may provide better understanding of early stages of pathogenesis; however, tools to tailor the composition and dynamics of the glycocalyx with precision are still limited. Here, we report a chemical cell surface engineering strategy to model the shedding behavior of mucins with spatial and temporal control. We generated synthetic mucin mimetic glycopolymers terminated with a photolabile membrane anchor, which could be introduced into the membranes of living cells and, subsequently, released upon exposure to UV light. By tuning the molecular density of the artificial glycocalyx we evaluated lectin crosslinking and its effect on shedding, showing that lectins can stabilize the glycocalyx and limit release of the mucin mimetics from the cell surface. Our findings indicate that endogenous and pathogen-associated lectins, which are known to interact with the host-cell glycocalyx, may alter mucin shedding dynamics and influence the protective properties of the mucosal barrier. More broadly, we present a method which enables photoengineering of the glycocalyx and can be used to facilitate the study of glycocalyx dynamics in other biological contexts.

4.
ACS Chem Biol ; 17(6): 1534-1542, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35574759

RESUMEN

Glycosaminoglycans (GAGs) are a class of highly negatively charged membrane-associated and extracellular matrix polysaccharides involved in the regulation of myriad biological functions, including cell adhesion, migration, signaling, and differentiation, among others. GAGs are typically attached to core proteins, termed proteoglycans (PGs), and can engage >500 binding proteins, making them prominent relays for sensing external stimuli and transducing cellular responses. However, their unique substructural protein-recognition domains that confer their binding specificity remain elusive. While the emergence of glycan arrays has rapidly enabled the profiling of ligand specificities of a range of glycan-binding proteins, their adaptation for the analysis of GAG-binding proteins has been considerably more challenging. Current GAG microarrays primarily employ synthetically defined oligosaccharides, which capture only a fraction of the structural diversity of native GAG polysaccharides. Augmenting existing array platforms to include GAG structures purified from tissues or produced in cells with engineered glycan biosynthetic pathways may significantly advance the understanding of structure-activity relationships in GAG-protein interactions. Here, we demonstrate an efficient and tunable strategy to mimic cellular proteoglycan architectures by conjugating biologically derived GAG chains to a protein scaffold, defined as neoproteoglycans (neoPGs). The use of a reactive fluorogenic linker enabled real-time monitoring of the conjugation reaction efficiency and tuning of the neoPG valency. Immobilization of the reagents on a 96-well array platform allowed for efficient probing of ligand binding and enzyme-substrate specificity, including growth factors and the human sulfatase 1. The neoPGs can also be used directly as soluble probes to evaluate GAG-dependent growth factor signaling in cells.


Asunto(s)
Glicosaminoglicanos , Proteoglicanos , Adhesión Celular , Glicosaminoglicanos/metabolismo , Humanos , Ligandos , Proteoglicanos/química , Proteoglicanos/metabolismo , Transducción de Señal
6.
J Mol Biol ; 434(5): 167460, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074482

RESUMEN

Influenza A virus (IAV) is a human-infecting pathogen with a history of causing seasonal epidemics and on several occasions worldwide pandemics. Infection by IAV causes a dramatic decrease in host mRNA translation, whereas viral mRNAs are efficiently translated. The IAV mRNAs have a highly conserved 5'-untranslated region (5'UTR) that is rich in adenosine residues. We show that the human polyadenylate binding protein 1 (PABP1) binds to the 5'UTR of the viral mRNAs. The interaction of PABP1 with the viral 5'UTR makes the translation of viral mRNAs more resistant to canonical cap-dependent translation inhibition than model mRNAs. Additionally, PABP1 bound to the viral 5'UTR can recruit eIF4G in an eIF4E-independent manner. These results indicate that PABP1 bound to the viral 5'UTR may promote eIF4E-independent translation initiation.


Asunto(s)
Virus de la Influenza A , Proteína I de Unión a Poli(A) , ARN Mensajero , ARN Viral , Regiones no Traducidas 5'/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
7.
Adv Healthc Mater ; 11(4): e2101232, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34541824

RESUMEN

Extracellular glycans, such as glycosaminoglycans (GAGs), provide an essential regulatory component during the development and maintenance of tissues. GAGs, which harbor binding sites for a range of growth factors (GFs) and other morphogens, help establish gradients of these molecules in the extracellular matrix (ECM) and promote the formation of active signaling complexes when presented at the cell surface. As such, GAGs have been pursued as biologically active components for the development of biomaterials for cell-based regenerative therapies. However, their structural complexity and compositional heterogeneity make establishing structure-function relationships for this class of glycans difficult. Here, a stem cell array platform is described, in which chemically modified heparan sulfate (HS) GAG polysaccharides are conjugated to a gelatin matrix and introduced into a polyacrylamide hydrogel network. This array allowed for direct analysis of HS contributions to the signaling via the FGF2-dependent mitogen activated protein kinase (MAPK) pathway in mouse embryonic stem cells. With the recent emergence of powerful synthetic and recombinant technologies to produce well-defined GAG structures, a platform for analyzing both growth factor binding and signaling in response to the presence of these biomolecules will provide a powerful tool for integrating glycans into biomaterials to advance their biological properties and applications.


Asunto(s)
Glicosaminoglicanos , Heparitina Sulfato , Animales , Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Células Madre/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34583992

RESUMEN

Membrane-associated mucins protect epithelial cell surfaces against pathogenic threats by serving as nonproductive decoys that capture infectious agents and clear them from the cell surface and by erecting a physical barrier that restricts their access to target receptors on host cells. However, the mechanisms through which mucins function are still poorly defined because of a limited repertoire of tools available for tailoring their structure and composition in living cells with molecular precision. Using synthetic glycopolymer mimetics of mucins, we modeled the mucosal glycocalyx on red blood cells (RBCs) and evaluated its influence on lectin (SNA) and virus (H1N1) adhesion to endogenous sialic acid receptors. The glycocalyx inhibited the rate of SNA and H1N1 adhesion in a size- and density-dependent manner, consistent with the current view of mucins as providing a protective shield against pathogens. Counterintuitively, increasing the density of the mucin mimetics enhanced the retention of bound lectins and viruses. Careful characterization of SNA behavior at the RBC surface using a range of biophysical and imaging techniques revealed lectin-induced crowding and reorganization of the glycocalyx with concomitant enhancement in lectin clustering, presumably through the formation of a more extensive glycan receptor patch at the cell membrane. Our findings indicate that glycan-targeting pathogens may exploit the biophysical and biomechanical properties of mucins to overcome the mucosal glycocalyx barrier.


Asunto(s)
Eritrocitos/metabolismo , Glicocálix/metabolismo , Lectinas/metabolismo , Mucinas/metabolismo , Polisacáridos/metabolismo , Biomimética/métodos , Membrana Celular/metabolismo , Membrana Celular/virología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Eritrocitos/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Membrana Mucosa/metabolismo , Membrana Mucosa/virología , Receptores de Superficie Celular/metabolismo
9.
Nat Chem Biol ; 17(6): 684-692, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33846619

RESUMEN

Heparan sulfate (HS) proteoglycans bind extracellular proteins that participate in cell signaling, attachment and endocytosis. These interactions depend on the arrangement of sulfated sugars in the HS chains generated by well-characterized biosynthetic enzymes; however, the regulation of these enzymes is largely unknown. We conducted genome-wide CRISPR-Cas9 screens with a small-molecule ligand that binds to HS. Screening of A375 melanoma cells uncovered additional genes and pathways impacting HS formation. The top hit was the epigenetic factor KDM2B, a histone demethylase. KDM2B inactivation suppressed multiple HS sulfotransferases and upregulated the sulfatase SULF1. These changes differentially affected the interaction of HS-binding proteins. KDM2B-deficient cells displayed decreased growth rates, which was rescued by SULF1 inactivation. In addition, KDM2B deficiency altered the expression of many extracellular matrix genes. Thus, KDM2B controls proliferation of A375 cells through the regulation of HS structure and serves as a master regulator of the extracellular matrix.


Asunto(s)
Proteínas F-Box/antagonistas & inhibidores , Estudio de Asociación del Genoma Completo , Heparitina Sulfato/metabolismo , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Algoritmos , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas , Matriz Extracelular/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Unión Proteica/genética , RNA-Seq , Sulfotransferasas/antagonistas & inhibidores
10.
Biomater Sci ; 9(5): 1652-1659, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33409513

RESUMEN

Growth factor (GF) patterning in stem cell spheroids, such as embryoid bodies (EBs), has been sought to guide their differentiation and organization into functional 3D tissue models and organoids. Current approaches relying on exposure of EBs to gradients of GFs suffer from poor molecular transport in the spheroid microenvironment and from high cost of production and low stability of recombinant GFs. We have developed an alternative method for establishing GF gradients in EBs utilizing stem cell surface engineering with membrane-targeting heparan sulfate-glycomimetic co-receptors for GFs. We have capitalized on the ability of amphiphilic lipid-functionalized glycopolymers with affinity for FGF2 to assemble into nanoscale vesicles with tunable dimensions and extracellular matrix penetrance. Upon size-dependent diffusion into EBs, the vesicles fused with the plasma membranes of stem cells, giving rise to concentric gradients of cells with enhanced FGF2-binding. The extracellular matrix-assisted cell surface remodeling process described is the first example of spatially-targeted glycocalyx engineering in multicellular systems to control GF localization. The glycopolymer structure, vesicle dimensions, and remodeling conditions determine the level of FGF2 adhesion and gradient slope. The increased chemical and thermal stability of the synthetic glycomimetics and the tunability of their GF-binding profile, which is defined by their glycosylation and may be extended to other recombinant or endogenous morphogens beyond FGF2, further increase the versatility of this method.


Asunto(s)
Cuerpos Embrioides , Glicocálix , Diferenciación Celular , Ingeniería Celular , Péptidos y Proteínas de Señalización Intercelular
11.
Chem ; 7(12): 3393-3411, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34993358

RESUMEN

Influenza A viruses (IAVs) exploit host glycans in airway mucosa for entry and infection. Detection of changes in IAV glycan-binding phenotype can provide early indication of transmissibility and infection potential. While zoonotic viruses are monitored for mutations, the influence of host glycan presentation on viral specificity remains obscured. Here, we describe an array platform which uses synthetic mimetics of mucin glycoproteins to model how receptor presentation and density in the mucinous glycocalyx may impact IAV recognition. H1N1 and H3N2 binding in arrays of α2,3- and α2,6-sialyllactose receptors confirmed their known sialic acid-binding specificities and revealed their different sensitivities to receptor presentation. Further, the transition of H1N1 from avian to mammalian cell culture improved the ability of the virus to recognize mucin-like displays of α2,6-sialic acid receptors. Support vector machine (SVM) learning efficiently characterized this shift in binding preference and may prove useful to study viral evolution to a new host.

12.
Cell ; 183(4): 1043-1057.e15, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32970989

RESUMEN

We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.


Asunto(s)
Betacoronavirus/fisiología , Heparitina Sulfato/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/aislamiento & purificación , Sitios de Unión , COVID-19 , Línea Celular , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Humanos , Riñón/metabolismo , Pulmón/metabolismo , Simulación de Dinámica Molecular , Pandemias , Peptidil-Dipeptidasa A/química , Neumonía Viral/patología , Neumonía Viral/virología , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
13.
bioRxiv ; 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32699853

RESUMEN

We show that SARS-CoV-2 spike protein interacts with cell surface heparan sulfate and angiotensin converting enzyme 2 (ACE2) through its Receptor Binding Domain. Docking studies suggest a putative heparin/heparan sulfate-binding site adjacent to the domain that binds to ACE2. In vitro, binding of ACE2 and heparin to spike protein ectodomains occurs independently and a ternary complex can be generated using heparin as a template. Contrary to studies with purified components, spike protein binding to heparan sulfate and ACE2 on cells occurs codependently. Unfractionated heparin, non-anticoagulant heparin, treatment with heparin lyases, and purified lung heparan sulfate potently block spike protein binding and infection by spike protein-pseudotyped virus and SARS-CoV-2 virus. These findings support a model for SARS-CoV-2 infection in which viral attachment and infection involves formation of a complex between heparan sulfate and ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin may represent new therapeutic opportunities.

15.
Methods Enzymol ; 626: 249-270, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31606078

RESUMEN

Glycosylation is a ubiquitous post-translational modification that decorates proteins and lipids with glycans. These glycans can play critical roles in regulating biological events, and therefore, the discovery of strategies that target these molecules represent an important advancement toward understanding and controlling glycan-mediated cellular phenotypes. We describe the use of a small molecule, surfen, to temporarily silence the functions mediated by heparan sulfate glycosaminoglycans in mouse embryonic stem cells. Surfen binds heparan sulfate to antagonize growth factor interactions, thereby inhibiting signal transduction events that lead to differentiation. The strategies outlined in this chapter allow the characterization of resulting antagonistic effects caused by glycan-small molecule binding events toward maintaining embryonic stem cell pluripotency, curbing differentiation, and inhibiting signaling events.


Asunto(s)
Heparitina Sulfato/metabolismo , Células Madre Embrionarias de Ratones/efectos de los fármacos , Urea/análogos & derivados , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Electroforesis en Gel de Poliacrilamida/métodos , Glicosaminoglicanos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Transducción de Señal/efectos de los fármacos , Urea/farmacología
17.
Faraday Discuss ; 219(0): 138-153, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31313786

RESUMEN

In the mucosal epithelium, the cellular glycocalyx can project tens to hundreds of nanometers into the extracellular space, erecting a physical barrier that provides protective functions, mediates the exchange of nutrients and regulates cellular interactions. Little is understood about how the physical properties of the mucosal glycocalyx influence molecular recognition at the cellular boundary. Here, we report the synthesis of PEG-based glycopolymers with tunable glycan composition, which approximate the extended architecture of mucin glycoproteins, and tether them to the plasma membranes of red blood cells (RBC) to construct an artificial mucin brush-like glycocalyx. We evaluated the association of two lectins, ConA and SNA, with their endogenous glycan ligands on the surface of the remodelled cells. The extended glycocalyx provided protection against agglutination of RBCs by both lectins; however, the rate and magnitude of ConA binding were attenuated to a greater degree in the presence of the glycopolymer spectators compared to those measured for SNA. The different sensitivity of ConA and SNA to glycocalyx crowding likely arises from the distinct presentation of their mannoside and sialoside receptors, respectively, within the native RBC glycocalyx.


Asunto(s)
Materiales Biomiméticos/metabolismo , Eritrocitos/metabolismo , Glicocálix/metabolismo , Hemaglutinación , Polietilenglicoles/metabolismo , Materiales Biomiméticos/química , Concanavalina A/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrocitos/citología , Glicocálix/química , Glicoconjugados/química , Glicoconjugados/metabolismo , Humanos , Mucinas/química , Mucinas/metabolismo , Lectinas de Plantas/metabolismo , Polietilenglicoles/química , Polímeros/química , Polímeros/metabolismo , Proteínas Inactivadoras de Ribosomas/metabolismo , Sambucus nigra/metabolismo
18.
Cell ; 177(7): 1672-1674, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31199912

RESUMEN

Cell membranes can adopt a variety of shapes and curvatures, yet our understanding of the factors involved remains limited. In this issue of Cell, Shurer et al. (2019) demonstrate that the glycocalyx can regulate cell shape from the outside in.


Asunto(s)
Glicocálix , Azúcares , Membrana Celular , Forma de la Célula
19.
Interface Focus ; 9(2): 20180080, 2019 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842878

RESUMEN

The glycocalyx is an information-dense network of biomacromolecules extensively modified through glycosylation that populates the cellular boundary. The glycocalyx regulates biological events ranging from cellular protection and adhesion to signalling and differentiation. Owing to the characteristically weak interactions between individual glycans and their protein binding partners, multivalency of glycan presentation is required for the high-avidity interactions needed to trigger cellular responses. As such, biological recognition at the glycocalyx interface is determined by both the structure of glycans that are present as well as their spatial distribution. While genetic and biochemical approaches have proven powerful in controlling glycan composition, modulating the three-dimensional complexity of the cell-surface 'glycoscape' at the sub-micrometre scale remains a considerable challenge in the field. This focused review highlights recent advances in glycocalyx engineering using synthetic nanoscale glycomaterials, which allows for controlled de novo assembly of complexity with precision not accessible with traditional molecular biology tools. We discuss several exciting new studies in the field that demonstrate the power of precision glycocalyx editing in living cells in revealing and controlling the complex mechanisms by which the glycocalyx regulates biological processes.

20.
Bioconjug Chem ; 30(3): 833-840, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30668905

RESUMEN

Heparan sulfate glycosaminoglycans (HS GAGs) attached to proteoglycans harbor high affinity binding sites for various growth factors (GFs) and direct their organization and activity across the cell-matrix interface. Here, we describe a mild and efficient method for generating HS-protein conjugates. The two-step process utilizes a "copper-free click" coupling between differentially sulfated heparinoids primed at their reducing end with an azide handle and a bovine serum albumin protein modified with complementary cyclooctyne functionality. When adsorbed on tissue culture substrates, the glycoconjugates served as extracellular matrix proteoglycan models with the ability to sequester FGF2 and influence mesenchymal stem cell proliferation based on the structure of their HS GAG component.


Asunto(s)
Matriz Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/química , Heparinoides/química , Células Madre/metabolismo , Animales , Glicosaminoglicanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...