Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Mol Biosci ; 11: 1379631, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725870

RESUMEN

Introduction: Discrimination between adenocarcinoma (ADC) and squamous cell carcinoma (SCC) subtypes in non-small cell lung cancer (NSCLC) patients is a significant challenge in oncology. Lipidomics analysis provides a promising approach for this differentiation. Methods: In an accompanying paper, we explored oxPCs levels in a cohort of 200 NSCLC patients. In this research, we utilized liquid chromatography coupled with mass spectrometry (LC-MS) to analyze the lipidomics profile of matching tissue and plasma samples from 25 NSCLC patients, comprising 11 ADC and 14 SCC cases. This study builds upon our previous findings, which highlighted the elevation of oxidised phosphatidylcholines (oxPCs) in NSCLC patients. Results: We identified eight lipid biomarkers that effectively differentiate between ADC and SCC subtypes using an untargeted approach. Notably, we observed a significant increase in plasma LPA 20:4, LPA 18:1, and LPA 18:2 levels in the ADC group compared to the SCC group. Conversely, tumour PC 16:0/18:2, PC 16:0/4:0; CHO, and plasma PC 16:0/18:2; OH, PC 18:0/20:4; OH, PC 16:0/20:4; OOH levels were significantly higher in the ADC group. Discussion: Our study is the first to report that plasma LPA levels can distinguish between ADC and SCC patients in NSCLC, suggesting a potential role for LPAs in NSCLC subtyping. This finding warrants further investigation into the mechanisms underlying these differences and their clinical implications.

2.
Biomed Pharmacother ; 175: 116731, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38761421

RESUMEN

Nutraceuticals have gained increasing interest, prompting the need to investigate plant extracts for their beneficial properties and potential side effects. This study aimed to assess the nutraceutical effects of environmentally clean extracts from Rosmarinus officinalis and Gongolaria abies-marina (formerly Cystoseira abies-marina (Phaeophyceae)) on the metabolic profile of streptozotocin-induced diabetic rats. We conducted untargeted LC-QTOF-MS metabolic profiling on six groups of rats: three diabetic groups receiving either a placebo, R. officinalis, or G. abies-marina extracts, and three corresponding control groups. The metabolic analysis revealed significant alterations in the levels of various glycerophospholipids, sterol lipids, and fatty acyls. Both extracts influenced the metabolic profile, partially mitigating diabetes-induced changes. Notably, G. abies-marina extract had a more pronounced impact on the animals' metabolic profiles compared to R. officinalis. In conclusion, our findings suggest that environmentally clean extracts from R. officinalis and G. abies-marina possess nutraceutical potential, as they were able to modulate the metabolic profile in streptozotocin-induced diabetic rats. G. abies-marina extract exhibited a more substantial effect on metabolic alterations induced by diabetes compared to R. officinalis. These results warrant further exploration of these plant extracts for their potential in managing diabetes-related metabolic disturbances.

3.
Sci Rep ; 13(1): 21809, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071228

RESUMEN

The heterogeneity of acute myeloid leukemia (AML), a complex hematological malignancy, is caused by mutations in myeloid cells affecting their differentiation and proliferation. Thus, various cytogenetic alterations in AML cells may be characterized by a unique metabolome and require different treatment approaches. In this study, we performed untargeted metabolomics to assess metabolomics differences between AML patients and healthy controls, AML patients with different treatment outcomes, AML patients in different risk groups based on the 2017 European LeukemiaNet (ELN) recommendations for the diagnosis and management of AML, AML patients with and without FLT3-ITD mutation, and a comparison between patients with FLT3-ITD, CBF-AML (Core binding factor acute myelogenous leukemia), and MLL AML (mixed-lineage leukemia gene) in comparison to control subjects. Analyses were performed in serum samples using liquid chromatography coupled with mass spectrometry (LC-MS). The obtained metabolomics profiles exhibited many alterations in glycerophospholipid and sphingolipid metabolism and allowed us to propose biomarkers based on each of the above assessments as an aid for diagnosis and eventual classification, allowing physicians to choose the best-suited treatment approach. These results highlight the application of LC-MS-based metabolomics of serum samples as an aid in diagnostics and a potential minimally invasive prognostic tool for identifying various cytogenetic and treatment outcomes of AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Pronóstico , Resultado del Tratamiento , Mutación , Factores de Riesgo , Tirosina Quinasa 3 Similar a fms/genética
5.
Front Mol Biosci ; 10: 1279645, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288337

RESUMEN

Introduction: Lung cancer is one of the most frequently studied types of cancer and represents the most common and lethal neoplasm. Our previous research on non-small cell lung cancer (NSCLC) has revealed deep lipid profile reprogramming and redox status disruption in cancer patients. Lung cell membranes are rich in phospholipids that are susceptible to oxidation, leading to the formation of bioactive oxidized phosphatidylcholines (oxPCs). Persistent and elevated levels of oxPCs have been shown to induce chronic inflammation, leading to detrimental effects. However, recent reports suggest that certain oxPCs possess anti-inflammatory, pro-survival, and endothelial barrier-protective properties. Thus, we aimed to measure the levels of oxPCs in NSCLC patients and investigate their potential role in lung cancer. Methods: To explore the oxPCs profiles in lung cancer, we performed in-depth, multi-level metabolomic analyses of nearly 350 plasma and lung tissue samples from 200 patients with NSCLC, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the two most prevalent NSCLC subtypes and COPD patients as a control group. First, we performed oxPC profiling of plasma samples. Second, we analyzed tumor and non-cancerous lung tissues collected during the surgical removal of NSCLC tumors. Because of tumor tissue heterogeneity, subsequent analyses covered the surrounding healthy tissue and peripheral and central tumors. To assess whether the observed phenotypic changes in the patients were associated with measured oxPC levels, metabolomics data were augmented with data from medical records. Results: We observed a predominance of long-chain oxPCs in plasma samples and of short-chain oxPCs in tissue samples from patients with NSCLC. The highest concentration of oxPCs was observed in the central tumor region. ADC patients showed higher levels of oxPCs compared to the control group, than patients with SCC. Conclusion: The detrimental effects associated with the accumulation of short-chain oxPCs suggest that these molecules may have greater therapeutic utility than diagnostic value, especially given that elevated oxPC levels are a hallmark of multiple types of cancer.

6.
Nutrients ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296989

RESUMEN

The relationship of high-carbohydrate (HC) meal intake to metabolic syndrome is still not fully explained. Metabolomics has the potential to indicate metabolic pathways altered by HC meals, which may improve our knowledge regarding the mechanisms by which HC meals may contribute to metabolic syndrome development. The fasting and postprandial metabolic response to HC or normo-carbohydrate (NC) meals with/without cinnamon + capsicum intake was evaluated using untargeted metabolomics and compared between normal-weight (NW) and overweight/obese (OW/OB) healthy men. Healthy male participants (age-matched) were divided into two groups (12 subjects per group). One was composed of men with normal weight (NW) and the other of men with overweight/obesity (OW/OB). On separate visits (with 2-3 week intervals), the participants received standardized HC or NC meals (89% or 45% carbohydrates, respectively). Fasting (0 min) and postprandial (30, 60, 120, 180 min) blood were collected for untargeted plasma metabolomics. Based on each metabolic feature's intensity change in time, the area under the curve (AUC) was calculated. Obtained AUCs were analyzed using multivariate statistics. Several metabolic pathways were found dysregulated after an HC meal in people from the OW/OB group but not the NW group. The consumption of HC meals by people with overweight/obesity led to a substantial increase in AUC, mainly for metabolites belonging to phospholipids and fatty acid amides. The opposite was observed for selected sphingolipids. The intake of cinnamon and capsicum normalized the concentration of selected altered metabolites induced by the intake of HC meals. A HC meal may induce an unfavourable postprandial metabolic response in individuals with overweight/obesity, and such persons should avoid HC meals.


Asunto(s)
Capsicum , Síndrome Metabólico , Humanos , Masculino , Sobrepeso , Cinnamomum zeylanicum , Carbohidratos de la Dieta/metabolismo , Periodo Posprandial/fisiología , Comidas , Obesidad/metabolismo , Ácidos Grasos , Esfingolípidos , Amidas , Glucemia , Estudios Cruzados , Insulina
7.
Front Mol Biosci ; 9: 982672, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213115

RESUMEN

Changes in serum or plasma metabolome may reflect gut microbiota dysbiosis, which is also known to occur in patients with prediabetes and type 2 diabetes (T2DM). Thus, developing a robust method for the analysis of microbiota-dependent metabolites (MDMs) is an important issue. Gas chromatography with mass spectrometry (GC-MS) is a powerful approach enabling detection of a wide range of MDMs in biofluid samples with good repeatability and reproducibility, but requires selection of a suitable solvents and conditions. For this reason, we conducted for the first time the study in which, we demonstrated an optimisation of samples preparation steps for the measurement of 75 MDMs in two matrices. Different solvents or mixtures of solvents for MDMs extraction, various concentrations and volumes of derivatizing reagents as well as temperature programs at methoxymation and silylation step, were tested. The stability, repeatability and reproducibility of the 75 MDMs measurement were assessed by determining the relative standard deviation (RSD). Finally, we used the developed method to analyse serum samples from 18 prediabetic (PreDiab group) and 24 T2DM patients (T2DM group) from our 1000PLUS cohort. The study groups were homogeneous and did not differ in age and body mass index. To select statistically significant metabolites, T2DM vs. PreDiab comparison was performed using multivariate statistics. Our experiment revealed changes in 18 MDMs belonging to different classes of compounds, and seven of them, based on the SVM classification model, were selected as a panel of potential biomarkers, able to distinguish between patients with T2DM and prediabetes.

8.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142318

RESUMEN

The pathogenesis of the disorders of calcium metabolism is not fully understood. This review discusses the studies in which metabolomics was applied in this area. Indeed, metabolomics could play an essential role in discovering biomarkers and elucidating pathological mechanisms. Despite the limited bibliography, the present review highlights the potential of metabolomics in identifying the biomarkers of some of the most common endocrine disorders, such as primary hyperparathyroidism (PHPT), secondary hyperparathyroidism (SHPT), calcium deficiency, osteoporosis and vitamin D supplementation. Metabolites related to above-mentioned diseorders were grouped into specific classes and mapped into metabolic pathways. Furthermore, disturbed metabolic pathways can open up new directions for the in-depth exploration of the basic mechanisms of these diseases at the molecular level.


Asunto(s)
Trastornos del Metabolismo del Calcio , Hiperparatiroidismo Secundario , Biomarcadores , Calcio , Trastornos del Metabolismo del Calcio/complicaciones , Humanos , Hiperparatiroidismo Secundario/etiología , Hormona Paratiroidea , Vitamina D
9.
Biochem Biophys Rep ; 31: 101318, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35967759

RESUMEN

Renal cell carcinoma (RCC) is a disease with no specific diagnostic method or treatment. Thus, the evaluation of novel diagnostic tools or treatment possibilities is essential. In this study, a multiplatform untargeted metabolomics analysis of urine was applied to search for a metabolic pattern specific for RCC, which could enable comprehensive assessment of its biochemical background. Thirty patients with diagnosed RCC and 29 healthy volunteers were involved in the first stage of the study. Initially, the utility of the application of the selected approach was checked for RCC with no differentiation for cancer subtypes. In the second stage, this approach was used to study clear cell renal cell carcinoma (ccRCC) in 38 ccRCC patients and 38 healthy volunteers. Three complementary analytical platforms were used: reversed-phase liquid chromatography coupled with time-of-flight mass spectrometry (RP-HPLC-TOF/MS), capillary electrophoresis coupled with time-of-flight mass spectrometry (CE-TOF/MS), and gas chromatography triple quadrupole mass spectrometry (GC-QqQ/MS). As a result of urine sample analyses, two panels of metabolites specific for RCC and ccRCC were selected. Disruptions in amino acid, lipid, purine, and pyrimidine metabolism, the TCA cycle and energetic processes were observed. The most interesting differences were observed for modified nucleosides. This is the first time that the levels of these compounds were found to be changed in RCC and ccRCC patients, providing a framework for further studies. Moreover, the application of the CE-MS technique enabled the determination of statistically significant changes in symmetric dimethylarginine (SDMA) in RCC.

10.
Bioorg Chem ; 127: 106009, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35841672

RESUMEN

Leishmaniases have a broad spectrum of clinical manifestations, ranging from a cutaneous to a progressive and fatal visceral disease. Chemotherapy is nowadays the almost exclusive way to fight the disease but limited by its scarce therapeutic arsenal, on its own compromised by adverse side effects and clinical resistance. Cyclobenzaprine (CBP), an FDA-approved oral muscle relaxant drug has previously demonstrated in vitro and in vivo activity against Leishmania sp., but its targets were not fully unveiled. This study aimed to define the role of energy metabolism as a target for the leishmanicidal mechanisms of CBP. Methodology to assess CBP leishmanicidal mechanism variation of intracellular ATP levels using living Leishmania transfected with a cytoplasmic luciferase. Induction of plasma membrane permeability by assessing depolarization with DiSBAC(2)3 and entrance of the vital dye SYTOX® Green. Mitochondrial depolarization by rhodamine 123 accumulation. Mapping target site within the respiratory chain by oxygen consumption rate. Reactive oxygen species (ROS) production using MitoSOX. Morphological changes by transmission electron microscopy. CBP caused on L. infantum promastigotes a decrease of intracellular ATP levels, with irreversible depolarization of plasma membrane, the collapse of the mitochondrial electrochemical potential, mild uncoupling of the respiratory chain, and ROS production, with ensuing intracellular Ca2+ imbalance and DNA fragmentation. Electron microscopy supported autophagic features but not a massive plasma membrane disruption. The severe and irreversible mitochondrial damage induced by CBP endorsed the bioenergetics metabolism as a relevant target within the lethal programme induced by CBP in Leishmania. This, together with the mild-side effects of this oral drug, endorses CBP as an appealing novel candidate as a leishmanicidal drug under a drug repurposing strategy.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmaniasis Visceral , Adenosina Trifosfato/metabolismo , Amitriptilina/análogos & derivados , Animales , Antiprotozoarios/metabolismo , Metabolismo Energético , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo
11.
Metabolites ; 12(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629960

RESUMEN

Although brown adipose tissue (BAT) is considered to play a protective role against obesity and type 2 diabetes, the mechanisms of its activation and associations with clinical parameters are not well described. Male adults underwent a 2 h cold exposure (CE) to activate BAT and, based on the results of PET/MRI performed after the CE, were divided into BAT(+) and BAT(-) groups. During the CE procedure, blood samples were collected and alterations in plasma metabolome in both groups were investigated using LC-MS. Additionally, associations between clinical factors and BAT were examined. Moreover, levels of glucose, insulin, leptin, TNF-α, FGF21, and FABP4 were assessed in serum samples. In the BAT(+) group, levels of LPC(17:0), LPE(20:4), LPE(22:4), LPE(22:6), DHA, linoleic acid, and oleic acid increased during CE, whereas levels of sphinganine-phosphate and sphingosine-1-phosphate decreased. Levels of LPE(O-18:0), 9-HpODE, and oleic acid were elevated, while the level of LPE(20:5) was reduced in BAT(+) compared to BAT(-) subjects. AUCs of LPC(18:2), LPC(O-18:2)/LPC(P-18:1), and SM(d32:2) negatively correlated with BAT. In the BAT(+) group, the concentration of FABP4 during and after CE was decreased compared to the basal level. No alterations were observed in the BAT(-) group. In conclusion, using untargeted metabolomics, we proved that the plasma metabolome is affected by cold-induced BAT activation.

12.
Cancers (Basel) ; 13(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34282765

RESUMEN

Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis, namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids, glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, especially in the early stage of cancer. Moreover, the presented results also indicated the activity of new metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in the early stage of NSCLC may reveal new prognostic and diagnostic targets.

13.
J Chromatogr A ; 1635: 461758, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33302137

RESUMEN

Capillary electrophoresis coupled to mass spectrometry is a power tool in untargeted metabolomics studies to analyze charged and polar compounds. However, identification is a challenge due to the variability of migration times and the lack of MS/MS spectra in CE-TOF-MS, the type of instruments most frequently employed. We present here a CE-MS search platform incorporated in CEU Mass Mediator to annotate metabolites with a confidence level L2. For its the development we analyzed 226 compounds using two fragmentor voltages: 100 and 200 V. The information obtained, such as relative migration times (RMT) and in-source fragments, were incorporated into the platform. In addition, we validated the CE-MS search functionality using different types of biological samples such as plasma samples (human, rat, and rabbit), mouse macrophages, and human urine. The RMT tolerance percentage for the search of metabolites has been determined, establishing 5% for all compounds, except for the compounds migrating in the electro-osmotic flow, for which the tolerance should be of 10%. It has also been demonstrated the robustness of the in-source fragmentation, which makes possible the annotation of compounds by means of their fragmentation pattern. As an example, 3-methylhistidine and 1-methilhistidine, whose RMT are very close, have been annotated. Studies of the fragmentation mechanisms of acyl-L-carnitines have shown that in-source fragmentation follows the general fragmentation rules and is a suitable alternative to MS/MS.


Asunto(s)
Electroforesis Capilar , Metabolómica/métodos , Espectrometría de Masas en Tándem , Animales , Carnitina/análogos & derivados , Carnitina/química , Humanos , Conejos , Ratas , Factores de Tiempo
14.
J Pharm Biomed Anal ; 191: 113623, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32966938

RESUMEN

Adipose tissue has been the subject of research for a very long time. Many studies perform a comprehensive analysis of different types of adipose tissue with an emphasis on brown adipose tissue. Mass spectrometry-based approaches are particularly useful in the exploration not only of the metabolic composition of adipose tissue but also its function. In the presented review, a complex and critical overview of publications devoted to the analysis of adipose tissue by means of mass spectrometry was performed. Detailed investigation of analytical aspects related to either untargeted or targeted analysis of adipose tissue was performed, leading to the formation of a collection of hints at the available analytical methods. Moreover, a profound analysis of the metabolic composition of brown adipose tissue was performed. Brown adipose tissue metabolome was characterized on structural and functional levels, providing information about its exact metabolic composition but also connecting these molecules and placing them into biochemical pathways. All our work resulted in a very broad picture of the analysis of adipose tissue, starting from the analytical aspects and finishing on the current knowledge about its composition.


Asunto(s)
Tejido Adiposo Pardo , Lípidos , Tejido Adiposo Pardo/metabolismo , Espectrometría de Masas , Metaboloma
15.
J Chromatogr A ; 1625: 461233, 2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32709312

RESUMEN

Untargeted metabolomics can be a great tool for exploring new scientific areas; however, wrong metabolite annotation questions the credibility and puts the success of the entire research at risk. Therefore, an effort should be made to improve the quality and robustness of the annotation despite of the challenges, especially when final identification with standards is not possible. Through non-targeted analysis of human plasma samples, from a large cancer cohort study using RP-LC-ESI-QTOF-MS/MS, we have resolved MS/MS annotation through spectral matching, directed to hydroxyeicosatetraenoic acids (HETEs) and, MS/MS structural elucidation for newly annotated oxidized lyso-phosphatidylcholines (oxLPCs). The annotation of unknowns is supported with structural information from fragmentation spectra as well as the fragmentation mechanisms involved, necessarily including data from both polarity modes and different collision energies. In this work, we present evidences that various oxidation products show significant differences between cancer patients and control individuals and we establish a workflow to help identify such modifications. We report here the upregulation of HETEs and oxLPCs in patients with neuroendocrine tumors (NETs). To our knowledge, this is the first attempt to determine HETEs in NETs and one of very few studies where oxLPCs are annotated. The obtained results provide an important insight regarding lipid oxidation in NETs, although their physiological functions still have to be established and require further research.


Asunto(s)
Lípidos/sangre , Metaboloma , Adulto , Anciano , Anciano de 80 o más Años , Axitinib/uso terapéutico , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Femenino , Humanos , Peroxidación de Lípido , Lípidos/química , Lípidos/aislamiento & purificación , Lisofosfatidilcolinas/sangre , Lisofosfatidilcolinas/química , Lisofosfatidilcolinas/aislamiento & purificación , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Análisis de Componente Principal , Espectrometría de Masas en Tándem/métodos
16.
Sci Rep ; 10(1): 7072, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341369

RESUMEN

Balloon catheter endothelial denudation in New Zealand white rabbits fed high cholesterol diet is a validated atherosclerosis model. Well-characterized in terms of atherosclerosis induction and progression, the metabolic changes associated with the atherosclerosis progression remain indeterminate. Non-targeted metabolomics permits to develop such elucidation and allows to evaluate the metabolic consequences of colchicine treatment, an anti-inflammatory drug that could revert these changes. 16 rabbits underwent 18 weeks of atherosclerosis induction by diet and aortic denudation. Thereafter animals were randomly assigned to colchicine treatment or placebo for 18 weeks while on diet. Plasma samples were obtained before randomization and at 36 weeks. Multiplatform (GC/MS, CE/MS, RP-HPLC/MS) metabolomics was applied. Plasma fingerprints were pre-processed, and the resulting matrixes analyzed to unveil differentially expressed features. Different chemical annotation strategies were accomplished for those significant features. We found metabolites associated with either atherosclerosis progression, or colchicine treatment, or both. Atherosclerosis was profoundly associated with an increase in circulating bile acids. Most of the changes associated with sterol metabolism could not be reverted by colchicine treatment. However, the variations in lysine, tryptophan and cysteine metabolism among others, have shown new potential mechanisms of action of the drug, also related to atherosclerosis progression, but not previously described.


Asunto(s)
Aterosclerosis , Colchicina/farmacología , Animales , Aterosclerosis/sangre , Aterosclerosis/inducido químicamente , Aterosclerosis/tratamiento farmacológico , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Metabolómica , Conejos , Distribución Aleatoria
17.
J Pharm Biomed Anal ; 178: 112958, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31718984

RESUMEN

In the liver, obesity is often manifested by the clinical disorder of the Non-Alcoholic Fatty Liver Disease (NAFLD). A proportion of NAFLD patients develop hepatic inflammation, known as Non-Alcoholic Steatohepatitis (NASH), which can end up in cirrhosis, or Hepatocellular Carcinoma (HCC). In this scenario, partial hepatectomy (PH) is an alternative to promote liver regeneration. However, as liver regeneration is impaired in NASH patients, more knowledge about its metabolic condition is needed to improve the regenerative response of the liver in this pathological condition. Although extensively employed, the panoply of molecular alterations involved in the regenerative response of the liver after partial hepatectomy PH is far from being fully characterized. Metabolic fingerprinting (metabolomics) is a powerful tool to help in the elucidation of complex metabolic networks, by means of a blind, naïve approach to study which metabolic nodes (metabolites) show the biggest variations between conditions. The objective of the present study was to gain deeper knowledge about the metabolic processes involved in the NASH animal model, and particularly in the effect of PH by using metabolomics. For achieving such information, twelve 8-week-old male C57BL/6 J mice, fed commercial chow (control diet) or methionine and choline-Deficient diet (MCD) for three weeks were subjected to PH and sacrificed 2 weeks later. Livers were removed and submitted to metabolic profiling analysis through RP-LC/MS (qTOF), GC/MS (qTOF) and CE/MS(TOF). More than 3000 different features were detected and repeated measurements one-way ANOVA analysis was performed to unveil significant features. MCD diet induced changes (p < 0.05) in 46% of the detected features, whereas PH provoked significant changes in 85% of them. Most of the changes were detected through LC/MS and were associated to lipid metabolism. However, changes of metabolites virtually related to other metabolic routes (amino acids, carbohydrates, nucleotides) were found altered and detected by CE/MS and GC/MS. The changes associated to PH show a similar trend regardless of the diet, but in the context of the diet deficient in methionine and choline we have found results that point to a different ratio glycolysis/tricarboxylic acid cycle. Moreover, in the NASH model, the regeneration of the liver structures occurs at the expense of an increased phosphatidylethanolamines/phosphatidylcholines ratio.


Asunto(s)
Colina/metabolismo , Hígado/metabolismo , Metionina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Dieta , Modelos Animales de Enfermedad , Hepatectomía/métodos , Metabolismo de los Lípidos/fisiología , Neoplasias Hepáticas/metabolismo , Masculino , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL
19.
Comput Struct Biotechnol J ; 17: 1113-1122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31462967

RESUMEN

The Lipid Annotation Service (LAS) is a representational state transfer (REST) application programming interface (API) service designed to aid researchers performing lipid annotation. It assigns certainty levels (very unlikely, unlikely, likely, and very likely) to the putative annotations received as input and explains the rationale of such assignments. Its rules, obtained from the Centre for Metabolomics and Bioanalysis (CEMBIO) and from a literature review, enable LAS to extract evidence to support or refute the annotations automatically by checking the inter-rule relationships. LAS is the first metabolite annotation tool capable of explaining in natural language (English) the evidence that supports or refutes the annotations. This facilitates the understanding of the results by the user and, thus, increases the user's confidence in the results. Concerning its performance, in an evaluation of blood plasma samples whose compounds had previously been identified using well-established standards, LAS yielded an F-measure higher than 80%.

20.
Methods Mol Biol ; 1978: 55-77, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31119657

RESUMEN

Although capillary electrophoresis (CE) coupled to mass spectrometry (MS) is a separation technique not extensively implemented, it offers differential possibilities in the study of polar and ionic metabolites in complex matrices with minimum sample treatment. However, in order to get successful results, some efforts at early stages and following specific recommendations are necessary.In this chapter, we describe our updated and well-tested methods for untargeted metabolomics using CE-MS-TOF for common biological samples: urine, serum or plasma, feces, tissues, and cells. Sample treatment, as well as separation and detection conditions are described in detail and other steps in the workflow for untargeted metabolomics are also explained. Special attention is paid to instrumental setup and advices for daily practice.Characteristic electropherograms obtained with each type of sample are depicted as well as groups of metabolites easily measured by this technique. Their global or individual comparisons have been given undoubtedly important information to unveil altered metabolic pathways, diagnosis, and prognosis or biomarker discovery in the study of diseases or conditions over decades.


Asunto(s)
Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Líquidos Corporales/metabolismo , Humanos , Suero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...