Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22831, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38129474

RESUMEN

The tolerance of European alder (Alnus glutinosa Gaertn.) to soil salinity can be attributed to symbiosis with microorganisms at the absorptive root level. However, it is uncertain how soil salinity impacts microbial recruitment in the following growing season. We describe the bacterial and fungal communities in the rhizosphere and endosphere of A. glutinosa absorptive roots at three tested sites with different salinity level. We determined the morphological diversity of ectomycorrhizal (ECM) fungi, the endophytic microbiota in the rhizosphere, and the colonization of new absorptive roots in the following growing season. While bacterial diversity in the rhizosphere was higher than that in the absorptive root endosphere, the opposite was true for fungi. Actinomycetota, Frankiales, Acidothermus sp. and Streptomyces sp. were more abundant in the endosphere than in the rhizosphere, while Actinomycetota and Acidothermus sp. dominated at saline sites compared to nonsaline sites. Basidiomycota, Thelephorales, Russulales, Helotiales, Cortinarius spp. and Lactarius spp. dominated the endosphere, while Ascomycota, Hypocreales and Giberella spp. dominated the rhizosphere. The ECM symbioses formed by Thelephorales (Thelephora, Tomentella spp.) constituted the core community with absorptive roots in the spring and further colonized new root tips during the growing season. With an increase in soil salinity, the overall fungal abundance decreased, and Russula spp. and Cortinarius spp. were not present at all. Similarly, salinity also negatively affected the average length of the absorptive root. In conclusion, the endophytic microbiota in the rhizosphere of A. glutinosa was driven by salinity and season, while the ECM morphotype community was determined by the soil fungal community present during the growing season and renewed in the spring.


Asunto(s)
Alnus , Basidiomycota , Microbiota , Micorrizas , Alnus/microbiología , Bacterias , Bosques , Suelo , Raíces de Plantas/microbiología , Microbiología del Suelo
2.
Sci Rep ; 13(1): 17146, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816775

RESUMEN

Studying bacterial adhesion to mineral surfaces is crucial for understanding soil properties. Recent research suggests that minimal coverage of sand particles with cell fragments significantly reduces soil wettability. Using atomic force microscopy (AFM), we investigated the influence of hypertonic stress on Pseudomonas fluorescens adhesion to four different minerals in water. These findings were compared with theoretical XDLVO predictions. To make adhesion force measurements comparable for irregularly shaped particles, we normalized adhesion forces by the respective cell-mineral contact area. Our study revealed an inverse relationship between wettability and the surface-organic carbon content of the minerals. This relationship was evident in the increased adhesion of cells to minerals with decreasing wettability. This phenomenon was attributed to hydrophobic interactions, which appeared to be predominant in all cell-mineral interaction scenarios alongside with hydrogen bonding. Moreover, while montmorillonite and goethite exhibited stronger adhesion to stressed cells, presumably due to enhanced hydrophobic interactions, kaolinite showed an unexpected trend of weaker adhesion to stressed cells. Surprisingly, the adhesion of quartz remained independent of cell stress level. Discrepancies between measured cell-mineral interactions and those calculated by XDLVO, assuming an idealized sphere-plane geometry, helped us interpret the chemical heterogeneity arising from differently exposed edges and planes of minerals. Our results suggest that bacteria may have a significant impact on soil wettability under changing moisture condition.


Asunto(s)
Pseudomonas fluorescens , Suelo , Pseudomonas fluorescens/metabolismo , Presión Osmótica , Microscopía de Fuerza Atómica/métodos , Minerales/metabolismo
3.
Plant Cell Environ ; 46(12): 3919-3932, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37675977

RESUMEN

Traditionally, fine roots were grouped using arbitrary size categories, rarely capturing the heterogeneity in physiology, morphology and functionality among different fine root orders. Fine roots with different functional roles are rarely separated in microbiome-focused studies and may result in confounding microbial signals and host-filtering across different root microbiome compartments. Using a 26-year-old common garden, we sampled fine roots from four temperate tree species that varied in root morphology and sorted them into absorptive and transportive fine roots. The rhizoplane and rhizosphere were characterized using 16S rRNA gene and internal transcribed spacer region amplicon sequencing and shotgun metagenomics for the rhizoplane to identify potential microbial functions. Fine roots were subject to metabolomics to spatially characterize resource availability. Both fungi and bacteria differed according to root functional type. We observed additional differences between the bacterial rhizoplane and rhizosphere compartments for absorptive but not transportive fine roots. Rhizoplane bacteria, as well as the root metabolome and potential microbial functions, differed between absorptive and transportive fine roots, but not the rhizosphere bacteria. Functional differences were driven by sugar transport, peptidases and urea transport. Our data highlights the importance of root function when examining root-microbial relationships, emphasizing different host selective pressures imparted on different root microbiome compartments.


Asunto(s)
Bacterias , Raíces de Plantas , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Rizosfera , Hongos , Microbiología del Suelo
4.
FEMS Microbes ; 4: xtac028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333443

RESUMEN

Determination of the effect of water stress on the surface properties of bacteria is crucial to study bacterial induced soil water repellency. Changes in the environmental conditions may affect several properties of bacteria such as the cell hydrophobicity and morphology. Here, we study the influence of adaptation to hypertonic stress on cell wettability, shape, adhesion, and surface chemical composition of Pseudomonas fluorescens. From this we aim to discover possible relations between the changes in wettability of bacterial films studied by contact angle and single cells studied by atomic and chemical force microscopy (AFM, CFM), which is still lacking. We show that by stress the adhesion forces of the cell surfaces towards hydrophobic functionalized probes increase while they decrease towards hydrophilic functionalized tips. This is consistent with the contact angle results. Further, cell size shrunk and protein content increased upon stress. The results suggest two possible mechanisms: Cell shrinkage is accompanied by the release of outer membrane vesicles by which the protein to lipid ratio increases. The higher protein content increases the rigidity and the number of hydrophobic nano-domains per surface area.

5.
Sci Total Environ ; 873: 162266, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822431

RESUMEN

Mixed forest stands tend to be more resistant to drought than species-specific stands partially due to complementarity in root ecology and physiology. We asked whether complementary differences in the drought resistance of soil microbiomes might contribute to this phenomenon. We experimented on the effects of reduced soil moisture on bacterial and fungal community composition in species-specific (single species) and mixed-species root zones of Norway spruce and European beech forests in a 5-year-old throughfall-exclusion experiment and across seasonal (spring-summer-fall) and latitudinal moisture gradients. Bacteria were most responsive to changes in soil moisture, especially members of Rhizobiales, while fungi were largely unaffected, including ectomycorrhizal fungi (EMF). Community resistance was higher in spruce relative to beech root zones, corresponding with the proportions of drought-favored (more in spruce) and drought-sensitive bacterial taxa (more in beech). The spruce soil microbiome also exhibited greater resistance to seasonal changes between spring (wettest) and fall (driest). Mixed-species root zones contained a hybrid of beech- and spruce-associated microbiomes. Several bacterial populations exhibited either enhanced resistance or greater susceptibility to drought in mixed root zones. Overall, patterns in the relative abundances of soil bacteria closely tracked moisture in seasonal and latitudinal precipitation gradients and were more predictive of soil water content than other environmental variables. We conclude that complementary differences in the drought resistance of soil microbiomes can occur and the likeliest form of complementarity in mixed-root zones coincides with the enrichment of drought-tolerant bacteria associated with spruce and the sustenance of EMF by beech.


Asunto(s)
Fagus , Micorrizas , Picea , Suelo , Bosques , Estaciones del Año , Fagus/fisiología , Bacterias , Árboles/fisiología , Picea/fisiología
6.
Ecol Evol ; 12(11): e9454, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36407897

RESUMEN

An understanding of both cognitive and affective domains of learning is critical to promoting undergraduate student success in biology. Field courses-which support student learning, observation, and experimentation in the outdoors-have been shown to be effective in supporting cognitive student outcomes. However, less is known about students' affective responses during field instruction. To better understand the affective domain in this course type, we asked students enrolled in a campus-based introductory field biology course to engage in weekly reflective journaling over the course of a semester. We employed inductive and deductive coding of over 700 field journal reflections using the Model of the Affective Domain for the Geosciences as a conceptual basis. Informed by our results, we present a theoretically-driven, five-part Framework of Student Affect in Field Biology and in-depth and novel insights into what students feel, believe, and value as they participate in an undergraduate field course. Our framework and coding results can be used by field course instructors to understand how to better design experiences that leave students feeling confident in their abilities, interested to learn more about nature, and empowered to persist in the discipline.

7.
Appl Environ Microbiol ; 88(21): e0073222, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36226960

RESUMEN

Increased drought intensity and frequency exposes soil bacteria to prolonged water stress. While numerous studies reported on behavioral and physiological mechanisms of bacterial adaptation to water stress, changes in bacterial cell surface properties during adaptation are not well researched. We studied adaptive changes in cell surface hydrophobicity (CSH) after exposure to osmotic (NaCl) and matric stress (polyethylene glycol 8000 [PEG 8000]) for six typical soil bacteria (Bacillus subtilis, Arthrobacter chlorophenolicus, Pseudomonas fluorescens, Novosphingobium aromaticivorans, Rhodococcus erythropolis, and Mycobacterium pallens) covering a wide range of cell surface properties. Additional physicochemical parameters (surface chemical composition, surface charge, cell size and stiffness) of B. subtilis and P. fluorescens were analyzed to understand their possible contribution to CSH development. Changes in CSH caused by osmotic and matric stress depend on strain and stress type. CSH of B. subtilis and P. fluorescens increased with stress intensity, R. erythropolis and M. pallens exhibited a generally high but constant contact angle, while the response of A. chlorophenolicus and N. aromaticivorans depended on growth conditions and stress type. Osmotically driven changes in CSH of B. subtilis and P. fluorescens are accompanied by increasing surface N/C ratio, suggesting an increase in protein concentration within the cell wall. Cell envelope proteins thus presumably control bacterial CSH in two ways: (i) by increases in the relative density of surface proteins due to efflux of cytoplasmic water and subsequent cell shrinkage, and (ii) by destabilization of cell wall proteins, resulting in conformational changes which render the surface more hydrophobic. IMPORTANCE Changes in precipitation frequency, intensity, and temporal distribution are projected to result in increased frequency and intensity of droughts and heavy rainfall events. Prolonged droughts can promote the development of soil water repellency (SWR); this impacts the infiltration and distribution of water in the soil profile, exposing soil microorganisms to water stress. Exposure to water stress has recently been reported to result in increased cell surface hydrophobicity. However, the mechanism of this development is poorly understood. This study investigates the changes in the physicochemical properties of bacterial cell surfaces under water stress as a possible mechanism of increased surface hydrophobicity. Our results improve understanding of the microbial response to water stress in terms of surface properties, the variations in stress response depending on cell wall composition, and its contribution to the development of SWR.


Asunto(s)
Deshidratación , Suelo , Humanos , Suelo/química , Propiedades de Superficie , Microbiología del Suelo , Sequías
8.
Bioscience ; 72(10): 1007-1017, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36196223

RESUMEN

Field courses provide transformative learning experiences that support success and improve persistence for science, technology, engineering, and mathematics majors. But field courses have not increased proportionally with the number of students in the natural sciences. We conducted a scoping review to investigate the factors influencing undergraduate participation in and the outcomes from field courses in the United States. Our search yielded 61 articles, from which we classified the knowledge, affect, behavior, and skill-based outcomes resulting from field course participation. We found consistent reporting on course design but little reporting on demographics, which limits our understanding of who takes field courses. Cost was the most commonly reported barrier to student participation, and knowledge gains were the most commonly reported outcome. This scoping review underscores the need for more rigorous and evidence-based investigations of student outcomes in field courses. Understanding how field courses support or hinder student engagement is necessary to make them more accessible to all students.

9.
Oecologia ; 200(1-2): 247-257, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36129577

RESUMEN

Even though drought impacts on tree physiology have been identified, whether drought affects leaf litter chemistry that, in turn, influences litter decay rates is still poorly understood. We compared litter quality and decomposition for two cohorts of leaves from five co-occurring seasonally deciduous tree species: Acer saccharum, Tilia americana, Quercus rubra, Quercus alba, and Ostrya virginiana. One cohort experienced a growing-season drought, and the other cohort came from the same trees in the ensuing, post-drought growing season. Leaf litter production was greater for drought litter than post-drought litter for all five species. Specific leaf area and nitrogen concentrations were 20% greater for the drought cohort than the post-drought cohort. Concentrations of non-structural carbohydrates were about 14% greater for the drought cohort, except for greater values for post-drought A. saccharum litter. Pectin in the middle lamella of leaf litter was 31% lower for the drought cohort compared to post-drought cohort. We found few differences in litter decay rates between drought and post-drought cohorts, although Q. rubra litter had more decomposition for the post-drought cohort than the drought cohort, whereas A. saccharum litter had more decomposition for the drought cohort than the post-drought cohort. Leaf litter decay rates for the drought cohort were related to litter nitrogen and lignin concentrations, whereas decay rates for the post-drought cohort were related to litter carbohydrate concentrations. Our findings suggest that the role of drought events on seasonally deciduous forest ecosystems must recognize species-specific, idiosyncratic responses in leaf litter quality and decomposition.


Asunto(s)
Ecosistema , Quercus , Sequías , Bosques , Humanos , Lignina/análisis , Nitrógeno/análisis , Pectinas/análisis , Hojas de la Planta/química , Árboles/fisiología
10.
Front Plant Sci ; 11: 623722, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584764

RESUMEN

Long-term minirhizotron observations of absorptive fine roots provide insights into seasonal patterns of belowground root production and carbon dynamics. Our objective was to compare root dynamics over time across mature individuals of 11 temperate trees species: five evergreen and six deciduous. We analyzed the timing and growth on 1st-and 2nd-order roots in minirhizotron images down to a vertical depth of 35 cm, as well as monthly and total annual length production. Production patterns were related to total annual precipitation of the actual and previous year of root production over 6 years. The main or largest peak of annual fine-root production occurred between June and September for almost all species and years. In most years, when peaks occurred, the timing of peak root production was synchronized across all species. A linear mixed model revealed significant differences in monthly fine-root length production across species in certain years (species x year, P < 0.0001), which was strongly influenced by three tree species. Total annual root production was much higher in 2000-2002, when there was above-average rainfall in the previous year, compared with production in 2005-2007, which followed years of lower-than-average rainfall (2003-2006). Compared to the wetter period all species experienced a decline of at least 75% in annual production in the drier years. Total annual root length production was more strongly associated with previous year's (P < 0.001) compared with the actual year's precipitation (P = 0.003). Remarkably similar timing of monthly absorptive fine-root growth can occur across multiple species of diverse phylogeny and leaf habit in a given year, suggesting a strong influence of extrinsic factors on absorptive fine-root growth. The influence of previous year precipitation on annual absorptive fine-root growth underscores the importance of legacy effects in biological responses and suggests that a growth response of temperate trees to extreme precipitation or drought events can be exacerbated across years.

11.
Tree Physiol ; 39(11): 1867-1879, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31504991

RESUMEN

Absorptive fine roots are an important driver of soil biogeochemical cycles. Yet, the spatio-temporal dynamics of those roots in the presence of neighboring species remain poorly understood. The aim of this study was to analyze shifts in absorptive fine-root traits in monoculture or mixtures of Fagus sylvatica [L.] and Picea abies [L.] Karst. We hypothesized that root competition would be higher under single-species than mixed-species interactions, leading to changes in (i) root survivorship, diameter and respiration and (ii) spatio-temporal patterns of root growth and death. Using minirhizotron methods, we monitored the timing and location of absorptive fine-root growth and death at an experimental forest in southern Germany from 2011 to 2013. We also measured root respiration in the spring and fall seasons of 2012 and 2013. Our findings show that the absorptive fine roots of F. sylvatica had a 50% higher risk of root mortality and higher respiration rates in the single-species compared to mixed-species zones. These results support our hypothesis that root competition is less intense for F. sylvatica in mixture versus monoculture. We were unable to find confirmation for the same hypothesis for P. abies. To analyze spatio-temporal patterns of absorptive fine-root production and mortality, we used a mixed-effects model considering root depth (space) and seasons (time) simultaneously. This analysis showed that F. sylvatica shifts root production towards shallower soil layers in mixed-species stands, besides significant seasonal fluctuations in root production depths for both species. Ultimately, the impact of neighbor species identity on root traits observed in this study has important implications for where, when and how fast root-facilitated carbon cycling takes place in single-species versus mixed-species forests. In addition, our study highlights the need for inclusion of absorptive fine-root spatio-temporal dynamics when examining belowground plant interactions and biogeochemical cycles.


Asunto(s)
Fagus , Picea , Bosques , Alemania , Raíces de Plantas , Árboles
12.
Tree Physiol ; 37(7): 950-960, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541559

RESUMEN

Hydraulic redistribution (HR) of soil water through plant roots is a crucial phenomenon improving the water balance of plants and ecosystems. It is mostly described under severe drought, and not yet studied under moderate drought. We tested the potential of HR under moderate drought, hypothesizing that (H1) tree species redistribute soil water in their roots even under moderate drought and that (H2) neighboring plants are supported with water provided by redistributing plants. Trees were planted in split-root systems with one individual (i.e., split-root plant, SRP) having its roots divided between two pots with one additional tree each. Species were 2- to  4-year-old English oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). A gradient in soil water potential (ψsoil) was established between the two pots (-0.55 ± 0.02 MPa and -0.29 ± 0.03 MPa), and HR was observed by labeling with deuterium-enriched water. Irrespective of species identity, 93% of the SRPs redistributed deuterium enriched water from the moist to the drier side, supporting H1. Eighty-eight percent of the plants in the drier pots were deuterium enriched in their roots, with 61 ± 6% of the root water originating from SRP roots. Differences in HR among species were related to their root anatomy with diffuse-porous xylem structure in both beech and-opposing the stem structure-oak roots. In spruce, we found exclusively tracheids. We conclude that water can be redistributed within roots of different tree species along a moderate ψsoil gradient, accentuating HR as an important water source for drought-stressed plants, with potential implications for ecohydrological and plant physiological sciences. It remains to be shown to what extent HR occurs under field conditions in Central Europe.


Asunto(s)
Sequías , Fagus/fisiología , Picea/fisiología , Quercus/fisiología , Agua/fisiología , Deuterio , Europa (Continente) , Marcaje Isotópico , Raíces de Plantas/fisiología , Árboles/fisiología
13.
Sci Rep ; 7: 42877, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28211469

RESUMEN

Soil wettability (quantified in terms of contact angle, CA) is crucial for physical, chemical, and biological soil functioning. As the CA is determined by components present within the outmost nanometer of particles, this study applied X-ray photoelectron spectroscopy (XPS) with a maximum analysis depth of 10 nm to test the relationship between CA and surface elemental composition, using soil samples from a chronosequence where CA increased from 0° (0 yrs) to about 98° (120 yrs). Concurrently, as seen by XPS, C and N content increased and the content of O and the mineral-derived cations (Si, Al, K, Na, Ca, Mg, Fe) decreased. The C content was positively correlated with CA and least squares fitting indicated increasing amounts of non-polar C species with soil age. The contents of O and the mineral-derived cations were negatively correlated with CA, suggesting an increasing organic coating of the minerals that progressively masked the underlying mineral phase. The atomic O/C ratio was found to show a close negative relationship with CA, which applied as well to further sample sets of different texture and origin. This suggests the surface O/C ratio to be a general parameter linking surface wettability and surface elemental composition.

14.
PLoS One ; 9(8): e104189, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25105975

RESUMEN

Belowground processes are rarely considered in comparison studies of native verses invasive species. We examined relationships between belowground fine root production and lifespan, leaf phenology, and seasonal nitrogen dynamics of Lonicera japonica (non-native) versus L. sempervirens (native) and Frangula alnus (non-native) versus Rhamnus alnifolia (native), over time. First and second order fine roots were monitored from 2010 to 2012 using minirhizotron technology and rhizotron windows. 15N uptake of fine roots was measured across spring and fall seasons. Significant differences in fine root production across seasons were seen between Lonicera species, but not between Frangula and Rhamnus, with both groups having notable asynchrony in regards to the timing of leaf production. Root order and the number of root neighbors at the time of root death were the strongest predictors of root lifespan of both species pairs. Seasonal 15N uptake was higher in spring than in the fall, which did not support the need for higher root activity to correspond with extended leaf phenology. We found higher spring 15N uptake in non-native L. japonica compared to native L. sempervirens, although there was no difference in 15N uptake between Frangula and Rhamnus species. Our findings indicate the potential for fast-growing non-native Lonicera japonica and Frangula alnus to outcompete native counterparts through differences in biomass allocation, root turnover, and nitrogen uptake, however evidence that this is a general strategy of invader dominance is limited.


Asunto(s)
Adaptación Biológica/fisiología , Especies Introducidas , Lonicera/fisiología , Raíces de Plantas/crecimiento & desarrollo , Rhamnus/fisiología , Estaciones del Año , Lonicera/metabolismo , Isótopos de Nitrógeno/farmacocinética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Rhamnus/metabolismo , Especificidad de la Especie
15.
Funct Plant Biol ; 40(5): 507-515, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-32481127

RESUMEN

The effect of groundcover management systems on root demography and distribution of newly planted avocado (Persea americana Mill) trees was examined using minirhizotron techniques. We evaluated three groundcover systems: (1) bare soil (BS), pre- and post-emergence herbicides; (2) vegetation strip (VS), post-emergence herbicide applied in a 1-m wide strip centred on the tree row plus a groundcover mixture seeded between tree rows; and (3) complete groundcover (GC), covering the entire surface of the plots. Root production was higher in the non-bearing year (2009-10) than in the bearing year (2010-11). Trees in the BS plots had more roots of bigger diameter in the top 30cm of soil and trees in VS and GC plots had more roots in the 30-60cm depth and of smaller diameter. Lifespan of spring-born roots were 61 and 59% greater than those born during autumn and summer, respectively and soil depth and root diameter were positively correlated with root longevity. Lifespan of thinner roots (<0.2mm) in the BS and VS plots were 49 and 33% greater than GC respectively. Avocado trees grown in contrasting condition compared with their native habitat show high morphological root plasticity, in response to resource and non-resource competition when grown in mixed stands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...