Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Toxicol Sci ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37941438

RESUMEN

The environmental toxicant cadmium (Cd) impairs the growth of rodents and humans in utero which in turn heightens susceptibility to diseases later in life. We previously demonstrated that the maternal-facing efflux transporter, breast cancer resistance protein (human BCRP/ABCG2, mouse Bcrp/Abcg2) confers resistance against Cd toxicity in human trophoblasts. In the current study, we sought to determine whether the absence of Bcrp alters the fetoplacental disposition and toxicity of Cd in mice. Pregnant female wild-type (WT) and Bcrp-null mice (n = 9-10/group) were administered a single injection of saline (5 ml/kg) or CdCl2 (5 mg/kg) on gestational day (GD) 9. Following Cd treatment, Bcrp-null offspring were shorter and accumulated more Cd in their placentas on GD 17 compared to WT mice. Because Cd can adversely impact placentation and transplacental nutrient delivery in mice, multiple pathways were assessed using morphometrics and immunohistochemistry including placenta zonation, vasculature development, and nutrient transporter expression. Most notably, the placentas of Bcrp-null mice had reduced immunostaining of the cell adhesion marker, ß-catenin, and the trophoblast marker, cytokeratin, as well as decreased expression of divalent metal nutrient transporters (Dmt1, Zip14, and ZnT1) following Cd treatment. In summary, the absence of Bcrp expression increased placental concentrations of Cd which was associated with shorter fetal size that may be related to differential changes in molecular patterns of placental development and nutrition.

2.
Toxicol Appl Pharmacol ; 475: 116636, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37487938

RESUMEN

In utero exposure to the toxic metal cadmium (Cd) alters fetoplacental growth in rodents and has been inversely associated with birth weight and infant size in some birth cohorts. Moreover, studies suggest that Cd may have differential effects on growth and development according to offspring sex. The purpose of the current study was to evaluate changes in male and female fetoplacental development following a single injection of saline (5 ml/kg ip) or cadmium chloride (CdCl2, 2.5, 5 mg/kg, ip) on gestational day (GD) 9. By GD18, no changes in fetal or placental weights were observed after treatment with 2.5 mg/kg CdCl2. By comparison, the weight and length of male fetuses and their placentas were reduced following treatment with 5 mg/kg CdCl2 whereas no change was observed in females. In addition, the area of maternal and fetal blood vessels as well as the expression of the glucose transporters, Glut1 and Glut3, and the endothelial marker, CD34, were reduced in the placentas of CdCl2-treated male offspring compared to females. Interestingly, the placentas of females accumulated 80% more Cd than males after CdCl2 (5 mg/kg) administration. Female placentas also had higher concentrations of zinc and the zinc transporter Znt1 compared to males which may explain the limited changes in fetal growth observed following CdCl2 treatment. Taken together, disruption of vasculature development and reduced expression of glucose transporters in the placenta provide potential mechanisms underlying reduced fetal growth in male offspring despite the greater accumulation of Cd in female placentas.


Asunto(s)
Cadmio , Placenta , Embarazo , Femenino , Masculino , Humanos , Placenta/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Desarrollo Fetal , Feto , Glucosa/metabolismo
3.
Drug Metab Dispos ; 51(8): 970-981, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37137719

RESUMEN

Alterations in renal elimination processes of glomerular filtration and active tubular secretion by renal transporters can result in adverse drug reactions. Nonalcoholic steatohepatitis (NASH) alters hepatic transporter expression and xenobiotic elimination, but until recently, renal transporter alterations in NASH were unknown. This study investigates renal transporter changes in rodent models of NASH to identify a model that recapitulates human alterations. Quantitative protein expression by surrogate peptide liquid chromatography-coupled mass spectrometry (LC-MS/MS) on renal biopsies from NASH patients was used for concordance analysis with rodent models, including methionine/choline deficient (MCD), atherogenic (Athero), or control rats and Leprdb/db MCD (db/db), C57BL/6J fast-food thioacetamide (FFDTH), American lifestyle-induced obesity syndrome (ALIOS), or control mice. Demonstrating clinical similarity to NASH patients, db/db, FFDTH, and ALIOS showed decreases in glomerular filtration rate (GFR) by 76%, 28%, and 24%. Organic anion transporter 3 (OAT3) showed an upward trend in all models except the FFDTH (from 3.20 to 2.39 pmol/mg protein), making the latter the only model to represent human OAT3 changes. OAT5, a functional ortholog of human OAT4, significantly decreased in db/db, FFDTH, and ALIOS (from 4.59 to 0.45, 1.59, and 2.83 pmol/mg protein, respectively) but significantly increased for MCD (1.67 to 4.17 pmol/mg protein), suggesting that the mouse models are comparable to human for these specific transport processes. These data suggest that variations in rodent renal transporter expression are elicited by NASH, and the concordance analysis enables appropriate model selection for future pharmacokinetic studies based on transporter specificity. These models provide a valuable resource to extrapolate the consequences of human variability in renal drug elimination. SIGNIFICANCE STATEMENT: Rodent models of nonalcoholic steatohepatitis that recapitulate human renal transporter alterations are identified for future transporter-specific pharmacokinetic studies to facilitate the prevention of adverse drug reactions due to human variability.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratas , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Roedores/metabolismo , Cromatografía Liquida , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Hígado/metabolismo , Metionina/metabolismo , Colina/metabolismo , Obesidad/metabolismo , Modelos Animales de Enfermedad , Proteínas de Transporte de Membrana/metabolismo
4.
Part Fibre Toxicol ; 20(1): 16, 2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-37088832

RESUMEN

BACKGROUND: Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE: The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS: Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS: Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17ß-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS: These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.


Asunto(s)
Nylons , Neumonía , Humanos , Ratas , Femenino , Animales , Ratas Sprague-Dawley , Nylons/toxicidad , Microplásticos , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Dilatación , Aerosoles y Gotitas Respiratorias , Neumonía/inducido químicamente , Pulmón , Inflamación/inducido químicamente , Tamaño de la Partícula , Líquido del Lavado Bronquioalveolar
5.
Nanomaterials (Basel) ; 13(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36839088

RESUMEN

Recent studies in experimental animals found that oral exposure to micro- and nano-plastics (MNPs) during pregnancy had multiple adverse effects on outcomes and progeny, although no study has yet identified the translocation of ingested MNPs to the placenta or fetal tissues, which might account for those effects. We therefore assessed the placental and fetal translocation of ingested nanoscale polystyrene MNPs in pregnant rats. Sprague Dawley rats (N = 5) were gavaged on gestational day 19 with 10 mL/kg of 250 µg/mL 25 nm carboxylated polystyrene spheres (PS25C) and sacrificed after 24 h. Hyperspectral imaging of harvested placental and fetal tissues identified abundant PS25C within the placenta and in all fetal tissues examined, including liver, kidney, heart, lung and brain, where they appeared in 10-25 µm clusters. These findings demonstrate that ingested nanoscale polystyrene MNPs can breach the intestinal barrier and subsequently the maternal-fetal barrier of the placenta to access the fetal circulation and all fetal tissues. Further studies are needed to assess the mechanisms of MNP translocation across the intestinal and placental barriers, the effects of MNP polymer, size and other physicochemical properties on translocation, as well as the potential adverse effects of MNP translocation on the developing fetus.

6.
Sci Rep ; 11(1): 19374, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588535

RESUMEN

Maternal exposure to environmental contaminants during pregnancy can profoundly influence the risk of developing cardiovascular disease in adult offspring. Our previous studies have demonstrated impaired cardiovascular health, microvascular reactivity, and cardiac function in fetal and young adult progeny after maternal inhalation of nano-sized titanium dioxide (nano-TiO2) aerosols during gestation. The present study was designed to evaluate the development of cardiovascular and metabolic diseases later in adulthood. Pregnant Sprague-Dawley rats were exposed to nano-TiO2 aerosols (~ 10 mg/m3, 134 nm median diameter) for 4 h per day, 5 days per week, beginning on gestational day (GD) 4 and ending on GD 19. Progeny were delivered in-house. Body weight was recorded weekly after birth. After 47 weeks, the body weight of exposed progeny was 9.4% greater compared with controls. Heart weight, mean arterial pressure, and plasma biomarkers of inflammation, dyslipidemia, and glycemic control were recorded at 3, 9 and 12 months of age, with no significant adaptations. While no clinical risk factors (i.e., hypertension, dyslipidemia, or systemic inflammation) emerged pertaining to the development of cardiovascular disease, we identified impaired endothelium-dependent and -independent arteriolar dysfunction and cardiac morphological alterations consistent with myocardial inflammation, degeneration, and necrosis in exposed progeny at 12 months. In conclusion, maternal inhalation of nano-TiO2 aerosols during gestation may promote the development of coronary disease in adult offspring.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Cardiopatías/inducido químicamente , Exposición Materna/efectos adversos , Nanoestructuras/toxicidad , Titanio/toxicidad , Administración por Inhalación , Animales , Animales Recién Nacidos , Femenino , Exposición por Inhalación , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley
7.
Part Fibre Toxicol ; 17(1): 55, 2020 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-33099312

RESUMEN

BACKGROUND: Plastic is everywhere. It is used in food packaging, storage containers, electronics, furniture, clothing, and common single-use disposable items. Microplastic and nanoplastic particulates are formed from bulk fragmentation and disintegration of plastic pollution. Plastic particulates have recently been detected in indoor air and remote atmospheric fallout. Due to their small size, microplastic and nanoplastic particulate in the atmosphere can be inhaled and may pose a risk for human health, specifically in susceptible populations. When inhaled, nanosized particles have been shown to translocate across pulmonary cell barriers to secondary organs, including the placenta. However, the potential for maternal-to-fetal translocation of nanosized-plastic particles and the impact of nanoplastic deposition or accumulation on fetal health remain unknown. In this study we investigated whether nanopolystyrene particles can cross the placental barrier and deposit in fetal tissues after maternal pulmonary exposure. RESULTS: Pregnant Sprague Dawley rats were exposed to 20 nm rhodamine-labeled nanopolystyrene beads (2.64 × 1014 particles) via intratracheal instillation on gestational day (GD) 19. Twenty-four hours later on GD 20, maternal and fetal tissues were evaluated using fluorescent optical imaging. Fetal tissues were fixed for particle visualization with hyperspectral microscopy. Using isolated placental perfusion, a known concentration of nanopolystyrene was injected into the uterine artery. Maternal and fetal effluents were collected for 180 min and assessed for polystyrene particle concentration. Twenty-four hours after maternal exposure, fetal and placental weights were significantly lower (7 and 8%, respectively) compared with controls. Nanopolystyrene particles were detected in the maternal lung, heart, and spleen. Polystyrene nanoparticles were also observed in the placenta, fetal liver, lungs, heart, kidney, and brain suggesting maternal lung-to-fetal tissue nanoparticle translocation in late stage pregnancy. CONCLUSION: These studies confirm that maternal pulmonary exposure to nanopolystyrene results in the translocation of plastic particles to placental and fetal tissues and renders the fetoplacental unit vulnerable to adverse effects. These data are vital to the understanding of plastic particulate toxicology and the developmental origins of health and disease.


Asunto(s)
Poliestirenos/toxicidad , Animales , Femenino , Feto , Humanos , Exposición por Inhalación , Exposición Materna , Intercambio Materno-Fetal , Tamaño de la Partícula , Placenta , Plásticos , Poliestirenos/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley
8.
Food Chem Toxicol ; 143: 111512, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32565406

RESUMEN

Raspberry ketone (RK; [4-(4-hydroxyphenyl)-2-butanone]) is used by the food and cosmetic industry as a flavoring agent. RK is also marketed as a dietary supplement for weight maintenance and appetite control. The purpose of the study was to characterize the acute feeding suppression with RK (64-640 mg/kg) by oral gavage in male and female C57BL/6J mice. Cumulative 24 h food intake was reduced at 200 mg/kg (24% feeding suppression) in males and reliably reduced at 640 mg/kg (49-77% feeding suppression). Feeding suppression was not associated with pica behavior over the range of doses or conditioned taste aversion. In a separate experiment, a single oral gavage of RK (640 mg/kg) resulted in approximate 43% mortality rate (6 out 14 male mice) within 2 days. Atrophy of white adipose tissue, splenic abnormalities, and thymus involution were noted after 2-4 days after oral gavage RK. Total white blood cell count, lymphocytes, monocytes, eosinophils were significantly lower, while mean red blood cells, hemoglobin, and hematocrit were significantly higher with RK treatment. Our findings indicated a dose-dependent feeding suppression with acute RK, but doses that reliable suppress food intake are associated with pathological changes.


Asunto(s)
Butanonas/toxicidad , Conducta Alimentaria/efectos de los fármacos , Administración Oral , Animales , Butanonas/administración & dosificación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Toxicol Rep ; 6: 841-849, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31485416

RESUMEN

Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver injury in humans and a common chemical model to investigate genetic determinants of susceptibility to drug-induced liver injury (DILI). Previous studies performed in our laboratory identified the efflux transporter multidrug resistance-associated protein 4 (Mrp4) as an inducible gene in the liver following toxic APAP exposure in both humans and rodents. In mice, blockade of hepatic Mrp4 induction following APAP administration increases susceptibility towards APAP hepatotoxicity. Collectively, these findings suggest that Mrp4 plays an important role in tolerance to APAP-induced liver injury. To further study the role of Mrp4 in APAP-induced hepatotoxicity, we treated 10-12 weeks old male wild type (WT, C57BL/6J) and Mrp4 knockout (Mrp4-/-) mice with APAP (400 mg/Kg in saline, i.p.) or vehicle. Liver injury endpoints and hepatic gene expression were analyzed at 12, 24 and 48 h post-APAP injections. Unexpectedly, the kinetics of histologically measured liver damage and plasma ALT revealed that Mrp4-/ mice had decreased ALT levels and hepatic necrosis compared to WT mice only at 12 h. Notably, hepatic non-protein sulfhydryl (NPSH) levels were increased in the APAP treated Mrp4-/- mice at intervals less than 24 h, consistent with the capability of Mrp4 to export glutathione. Further gene expression analysis revealed that hepatic drug metabolism genes were downregulated in Mrp4-/- mice at earlier time points post-APAP administration. However, despite significant decreases in endpoints of liver injury detected at an early time point after APAP treatment, these changes were not sustained at later time points as Mrp4-/- mice ultimately had hepatic toxicity at levels comparable to WT mice. In conclusion, our data indicate that lack of Mrp4 by itself in mice does not alter susceptibility to APAP toxicity.

10.
J Biochem Mol Toxicol ; 31(2)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27712037

RESUMEN

Nonalcoholic steatohepatitis (NASH) has been identified as a source of significant interindividual variation in drug metabolism. A previous ex vivo study demonstrated significant changes in hepatic Cytochrome P450 (CYP) activity in human NASH. This study evaluated the in vivo activities of multiple CYP isoforms simultaneously in prominent diabetic NASH mouse models. The pharmacokinetics of CYP selective substrates: caffeine, losartan, and omeprazole changed significantly in a diabetic NASH mouse model, indicating attenuation of the activity of Cyp1a2 and Cyp2c29, respectively. Decreased mRNA expression of Cyp1a2 and Cyp2c29, as well as an overall decrease in CYP protein expression, was found in the diabetic NASH mice. Overall, these data suggest that the diabetic NASH model only partially recapitulates the human ex vivo CYP alteration pattern. Therefore, in vivo determination of the effects of NASH on CYP activity should be conducted in human, and more appropriate models are required for future drug metabolism studies in NASH.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales de Enfermedad , Enfermedad del Hígado Graso no Alcohólico/enzimología , Animales , Sistema Enzimático del Citocromo P-450/genética , Humanos , Hígado/enzimología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , ARN Mensajero/genética
11.
Biochim Biophys Acta ; 1862(4): 662-669, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26850476

RESUMEN

BACKGROUND AND AIMS: Pretreatment with clofibrate, a peroxisome proliferator-activated receptor alpha (PPARa) agonist, protects mice from acetaminophen (APAP) injury. Protection is not due to alterations in APAP metabolism and is dependent on PPARa expression. Gene array analysis revealed that mice receiving clofibrate have enhanced hepatic Vanin-1 (Vnn1) gene expression, a response that is also PPARa dependent. METHODS: We examined the role of Vnn1 by comparing the responses of Vnn1 knockout and wild-type mice following APAP hepatotoxicity. APAP metabolism, hepatotoxicity, and compensatory hepatocyte proliferation and immune responses were assessed. RESULTS: Vnn1 knockout mice are more susceptible to APAP hepatotoxicity despite no differences in hepatic glutathione content, gene expression of APAP metabolizing enzymes, or hepatic capacity to bioactivate or detoxify APAP ex vivo. Together, these data strongly suggest that the susceptibility of Vnn1 knockout mice is not due to differences in APAP metabolism. Immunochemistry revealed a lack of proliferating cell nuclear antigen-positive hepatocytes and F4/80-positive macrophages in and around areas of centrilobular necrosis in APAP-treated Vnn1 knockouts. Hepatic gene induction of pro-inflammatory cytokines was either significantly reduced or completely blunted in these mice. This was correlated with a reduction in early recruitment of cells positive for granulocyte differentiation antigen 1 or integrin alpha M. Heightened toxicity was also observed in CCl4 and ConA hepatitis models in the absence of Vnn1. CONCLUSIONS: These results indicate that mice lacking Vnn1 have deficiencies in compensatory repair and immune responses following toxic APAP exposure and that these mechanisms may contribute to the enhanced hepatotoxicity seen.


Asunto(s)
Acetaminofén/efectos adversos , Amidohidrolasas/deficiencia , Proliferación Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Hígado/inmunología , Acetaminofén/farmacología , Amidohidrolasas/inmunología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Clofibrato/farmacología , Proteínas Ligadas a GPI/deficiencia , Proteínas Ligadas a GPI/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Hepatocitos/inmunología , Hepatocitos/patología , Hígado/patología , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/inmunología
12.
Diabetes ; 64(9): 3305-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26016715

RESUMEN

Metformin is an antihyperglycemic drug that is widely prescribed for type 2 diabetes mellitus and is currently being investigated for the treatment of nonalcoholic steatohepatitis (NASH). NASH is known to alter hepatic membrane transporter expression and drug disposition similarly in humans and rodent models of NASH. Metformin is almost exclusively eliminated through the kidney primarily through active secretion mediated by Oct1, Oct2, and Mate1. The purpose of this study was to determine how NASH affects kidney transporter expression and metformin pharmacokinetics. A single oral dose of [(14)C]metformin was administered to C57BL/6J (wild type [WT]) and diabetic ob/ob mice fed either a control diet or a methionine- and choline-deficient (MCD) diet. Metformin plasma concentrations were slightly increased in the WT/MCD and ob/control groups, whereas plasma concentrations were 4.8-fold higher in ob/MCD mice compared with WT/control. The MCD diet significantly increased plasma half-life and mean residence time and correspondingly decreased oral clearance in both genotypes. These changes in disposition were caused by ob/ob- and MCD diet-specific decreases in the kidney mRNA expression of Oct2 and Mate1, whereas Oct1 mRNA expression was only decreased in ob/MCD mice. These results indicate that the diabetic ob/ob genotype and the MCD disease model alter kidney transporter expression and alter the pharmacokinetics of metformin, potentially increasing the risk of drug toxicity.


Asunto(s)
Hipoglucemiantes/farmacocinética , Riñón/metabolismo , Hígado/metabolismo , Metformina/farmacocinética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Mensajero/metabolismo , Animales , Colina , Diabetes Mellitus Tipo 2 , Hipoglucemiantes/metabolismo , Riñón/patología , Hígado/patología , Metformina/metabolismo , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/patología , Factor 1 de Transcripción de Unión a Octámeros/genética , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador 2 de Cátion Orgánico , Distribución Tisular
13.
Drug Metab Dispos ; 43(7): 944-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25897176

RESUMEN

Diclofenac (DCF) is a nonsteroidal anti-inflammatory drug commonly prescribed to reduce pain in acute and chronic inflammatory diseases. One of the main DCF metabolites is a reactive diclofenac acyl glucuronide (DCF-AG) that covalently binds to biologic targets and may contribute to adverse drug reactions arising from DCF use. Cellular efflux of DCF-AG is partially mediated by multidrug resistance-associated proteins (Mrp). The importance of Mrp2 during DCF-induced toxicity has been established, yet the role of Mrp3 remains largely unexplored. In the present work, Mrp3-null (KO) mice were used to study the toxicokinetics and toxicodynamics of DCF and its metabolites. DCF-AG plasma concentrations were 90% lower in KO mice than in wild-type (WT) mice, indicating that Mrp3 mediates DCF-AG basolateral efflux. In contrast, there were no differences in DCF-AG biliary excretion between WT and KO, suggesting that only DCF-AG basolateral efflux is compromised by Mrp3 deletion. Susceptibility to toxicity was also evaluated after a single high DCF dose. No signs of injury were detected in livers and kidneys; however, ulcers were found in the small intestines. Furthermore, the observed intestinal injuries were consistently more severe in KO compared with WT. DCF covalent adducts were observed in liver and small intestines; however, staining intensity did not correlate with the severity of injuries, implying that tissues respond differently to covalent modification. Overall, the data provide strong evidence that (1) in vivo Mrp3 plays an important role in DCF-AG disposition and (2) compromised Mrp3 function can enhance injury in the gastrointestinal tract after DCF treatment.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Antiinflamatorios no Esteroideos/toxicidad , Diclofenaco/toxicidad , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Antiinflamatorios no Esteroideos/farmacocinética , Bilis/metabolismo , Diclofenaco/farmacocinética , Glucurónidos/metabolismo , Inmunohistoquímica , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/genética , Enfermedades Intestinales/patología , Intestino Delgado/metabolismo , Intestino Delgado/patología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Úlcera Péptica/inducido químicamente , Úlcera Péptica/patología
14.
Biochem Pharmacol ; 94(3): 203-11, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25667042

RESUMEN

Changes in expression of liver ABC transporters have been described during acute APAP intoxication. However, the effect of APAP on brain ABC transporters is poorly understood. The aim of this study was to evaluate the effect of APAP on brain ABC transporters expression and the role of the oxidative stress sensor Nrf2. Male C57BL/6J mice were administered APAP (400mg/kg) for analysis of brain mRNA and protein expression of Mrp1-6, Bcrp and P-gp. The results show induction of P-gp, Mrp2 and Mrp4 proteins, with no changes in Bcrp, Mrp1 or Mrp5-6. The protein values were accompanied by corresponding changes in mRNA levels. Additionally, brain Nrf2 nuclear translocation and expression of two Nrf2 target genes, NAD(P)H: quinone oxidoreductase 1 (Nqo1) and Hemoxygenase 1 (Ho-1), was evaluated at 6, 12 and 24h after APAP treatment. Nrf2 nuclear content increased by 58% at 12h after APAP along with significant increments in mRNA and protein expression of Nqo1 and Ho-1. Furthermore, APAP treated Nrf2 knockout mice did not increase mRNA or protein expression of Mrp2 and Mrp4 as observed in wildtypes. In contrast, P-gp induction by APAP was observed in both genotypes. In conclusion, acute APAP intoxication induces protein expression of brain P-gp, Mrp2 and Mrp4. This study also suggests that brain changes in Mrp2 and Mrp4 expression may be due to in situ Nrf2 activation by APAP, while P-gp induction is independent of Nrf2 function. The functional consequences of these changes in brain ABC transporters by APAP deserve further attention.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Acetaminofén/envenenamiento , Encéfalo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Factor 2 Relacionado con NF-E2/fisiología , Transcripción Genética/fisiología , Animales , Secuencia de Bases , Western Blotting , Cromatografía Líquida de Alta Presión , Cartilla de ADN , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética
15.
Gastroenterology ; 148(5): 1012-1023.e14, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25701738

RESUMEN

BACKGROUND & AIMS: Hyperhomocysteinemia is often associated with liver and metabolic diseases. We studied nuclear receptors that mediate oscillatory control of homocysteine homeostasis in mice. METHODS: We studied mice with disruptions in Nr0b2 (called small heterodimer partner [SHP]-null mice), betaine-homocysteine S-methyltransferase (Bhmt), or both genes (BHMT-null/SHP-null mice), along with mice with wild-type copies of these genes (controls). Hyperhomocysteinemia was induced by feeding mice alcohol (National Institute on Alcohol Abuse and Alcoholism binge model) or chow diets along with water containing 0.18% DL-homocysteine. Some mice were placed on diets containing cholic acid (1%) or cholestyramine (2%) or high-fat diets (60%). Serum and livers were collected during a 24-hour light-dark cycle and analyzed by RNA-seq, metabolomic, and quantitative polymerase chain reaction, immunoblot, and chromatin immunoprecipitation assays. RESULTS: SHP-null mice had altered timing in expression of genes that regulate homocysteine metabolism compared with control mice. Oscillatory production of S-adenosylmethionine, betaine, choline, phosphocholine, glyceophosphocholine, cystathionine, cysteine, hydrogen sulfide, glutathione disulfide, and glutathione, differed between SHP-null mice and control mice. SHP inhibited transcriptional activation of Bhmt and cystathionine γ-lyase by FOXA1. Expression of Bhmt and cystathionine γ-lyase was decreased when mice were fed cholic acid but increased when they were placed on diets containing cholestyramine or high-fat content. Diets containing ethanol or homocysteine induced hyperhomocysteinemia and glucose intolerance in control, but not SHP-null, mice. In BHMT-null and BHMT-null/SHP-null mice fed a control liquid, lipid vacuoles were observed in livers. Ethanol feeding induced accumulation of macrovesicular lipid vacuoles to the greatest extent in BHMT-null and BHMT-null/SHP-null mice. CONCLUSIONS: Disruption of Shp in mice alters timing of expression of genes that regulate homocysteine metabolism and the liver responses to ethanol and homocysteine. SHP inhibits the transcriptional activation of Bhmt and cystathionine γ-lyase by FOXA1.


Asunto(s)
Ritmo Circadiano , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Homocisteína/metabolismo , Hiperhomocisteinemia/metabolismo , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Betaína-Homocisteína S-Metiltransferasa/genética , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Glucemia/metabolismo , Resina de Colestiramina , Ácido Cólico , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Etanol , Regulación Enzimológica de la Expresión Génica , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/metabolismo , Homeostasis , Homocisteína/sangre , Hiperhomocisteinemia/sangre , Hiperhomocisteinemia/inducido químicamente , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/prevención & control , Ratones Noqueados , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética , Factores de Tiempo , Activación Transcripcional
16.
Drug Metab Dispos ; 43(2): 266-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25488932

RESUMEN

Nonalcoholic fatty liver disease is the most common chronic liver disease, which can progress to nonalcoholic steatohepatitis (NASH). Previous investigations demonstrated alterations in the expression and activity of hepatic drug transporters in NASH. Moreover, studies using rodent models of cholestasis suggest that compensatory changes in kidney transporter expression occur to facilitate renal excretion during states of hepatic stress; however, little information is currently known regarding extrahepatic regulation of drug transporters in NASH. The purpose of the current study was to investigate the possibility of renal drug transporter regulation in NASH across multiple experimental rodent models. Both rat and mouse NASH models were used in this investigation and include: the methionine and choline-deficient (MCD) diet, atherogenic diet, fa/fa rat, ob/ob and db/db mice. Histologic and pathologic evaluations confirmed that the MCD and atherogenic rats as well as the ob/ob and db/db mice all developed NASH. In contrast, the fa/fa rats did not develop NASH but did develop extensive renal injury compared with the other models. Renal mRNA and protein analyses of xenobiotic transporters suggest that compensatory changes occur in NASH to favor increased xenobiotic secretion. Specifically, both apical efflux and basolateral uptake transporters are induced, whereas apical uptake transporter expression is repressed. These results suggest that NASH may alter the expression and potentially function of renal drug transporters, thereby impacting drug elimination mechanisms in the kidney.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Riñón/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Perfilación de la Expresión Génica , Riñón/patología , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas Mutantes , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
17.
Drug Metab Dispos ; 42(10): 1663-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25092713

RESUMEN

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that positively regulates the expression and activity of cytoprotective genes during periods of oxidative stress. It has previously been shown that some Nrf2 genes are more highly expressed in livers of female than male mice. This could explain previously reported sex-related differences in susceptibility to acetaminophen (APAP) hepatotoxicity in mice, where females show greater resistance to APAP hepatotoxicity. Here, we examined, for the first time, differences in mRNA and protein expression for Nrf2 and a battery of Nrf2-dependent genes in naïve wild-type (WT) and overnight-fasted WT and Nrf2-null male and female mice following APAP treatment. Alanine aminotransferase (ALT) activity was measured as an indicator of hepatotoxicity. Hepatic mRNA and protein levels were measured by quantitative polymerase chain reaction and western blotting, respectively. Contrary to expectations, basal Nrf2 mRNA and protein expression were significantly lower in livers of naïve female than male mice. Although mRNA and/or protein expression of quinone oxidoreductase 1 and multidrug resistance-associated protein 4 was more pronounced in livers of female than male mice under some of the conditions examined, no higher global expression of Nrf2-dependent genes was detected in female mice. Furthermore, ALT activity was significantly elevated in overnight-fasted WT and Nrf2-null male mice following APAP treatment, but no increases in ALT were observed in either genotype of female mice. These results indicate that factors other than Nrf2 are responsible for the lower susceptibility of female mice to APAP hepatotoxicity.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Caracteres Sexuales , Alanina Transaminasa/sangre , Animales , Ayuno , Femenino , Glutatión/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/biosíntesis , NAD(P)H Deshidrogenasa (Quinona)/biosíntesis , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética
18.
Toxicol Sci ; 142(1): 45-55, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25080921

RESUMEN

Hepatic drug metabolizing enzymes and transporters play a crucial role in determining the fate of drugs, and alterations in liver function can place individuals at greater risk for adverse drug reactions (ADRs). We have shown that nonalcoholic steatohepatitis (NASH) leads to changes in the expression and localization of enzymes and transporters responsible for the disposition of numerous drugs. The purpose of this study was to determine the effect of NASH on methotrexate (MTX) disposition and the resulting toxicity profile. Sprague Dawley rats were fed either a control or methionine-choline-deficient diet for 8 weeks to induce NASH, then administered a single ip vehicle, 10, 40, or 100 mg/kg MTX injection followed by blood, urine, and feces collection over 96 h with terminal tissue collection. At the onset of dosing, Abcc1-4, Abcb1, and Abcg2 were elevated in NASH livers, whereas Abcc2 and Abcb1 were not properly localized to the membrane, similar to that previously observed in human NASH. NASH rodents receiving 40-100 mg/kg MTX exhibited hepatocellular damage followed by initiation of repair, whereas damage was absent in controls. NASH rodents receiving 100 mg/kg MTX exhibited slightly greater renal toxicity, indicating multiple organ toxicity, despite the majority of the dose being excreted by 6 h. Intestinal toxicity in NASH however, was strikingly less severe than controls, and coincided with reduced fecal MTX excretion. Because MTX-induced gastrointestinal toxicity limits the dose escalation necessary for cancer remission, these data suggest a greater risk for life-threatening MTX-induced hepatic and renal toxicity in NASH in the absence of overt gastrointestinal toxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Metotrexato/toxicidad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Heces/química , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metotrexato/sangre , Metotrexato/farmacocinética , Metotrexato/orina , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Ratas Sprague-Dawley , Distribución Tisular
19.
Toxicol Sci ; 142(1): 105-16, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25145655

RESUMEN

Adverse drug reactions (ADRs) represent a significant clinical challenge with respect to patient morbidity and mortality. We investigated the hepatotoxicity and systems level metabolic phenotype of methotrexate (MTX) in the context of a prevalent liver disease; non-alcoholic steatohepatitis (NASH). A nuclear magnetic resonance spectroscopic-based metabonomic approach was employed to analyze the metabolic consequences of MTX (0, 10, 40, and 100 mg/kg) in the urine and liver of healthy rats (control diet) and in a model of NASH (methionine-choline deficient diet). Histopathological analysis confirmed baseline (0 mg/kg) liver necrosis, liver inflammation, and lipid accumulation in the NASH model. Administration of MTX (40 and 100 mg/kg) led to liver necrosis in the control cohort, whereas the NASH cohort also displayed biliary hyperplasia and liver fibrosis (100 mg/kg), providing evidence of the synergistic effect of MTX and NASH. The complementary hepatic and urinary metabolic phenotypes of the NASH model, at baseline, revealed perturbation of multiple metabolites associated with oxidative and energetic stress, and folate homeostasis. Administration of MTX in both diet cohorts showed dose-dependent metabolic consequences affecting gut microbial, energy, nucleobase, nucleoside, and folate metabolism. Furthermore, a unique panel of metabolic changes reflective of the synergistic effect of MTX and NASH was identified, including the elevation of hepatic phenylalanine, urocanate, acetate, and both urinary and hepatic formiminoglutamic acid. This systems level metabonomic analysis of the hepatotoxicity of MTX in the context of NASH provided novel mechanistic insight of potential wider clinical relevance for further understanding the role of liver pathology as a risk factor for ADRs.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Hígado/metabolismo , Metotrexato/toxicidad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/orina , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/orina , Metabolismo Energético/efectos de los fármacos , Ácido Fólico/metabolismo , Ácido Fólico/orina , Hígado/efectos de los fármacos , Hígado/patología , Espectroscopía de Resonancia Magnética , Masculino , Metabolómica , Metotrexato/administración & dosificación , Metotrexato/farmacocinética , Metotrexato/orina , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Distribución Tisular
20.
Toxicol Sci ; 141(2): 475-83, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25015657

RESUMEN

Paraquat is a herbicide that is highly toxic to the lungs and kidneys following acute exposures. Prior studies have demonstrated that the organic cation transporter 2 and multidrug and toxin extrusion protein 1 contribute to the urinary secretion of paraquat in the kidneys. The purpose of this study was to determine whether the multidrug resistance protein 1 (MDR1/Mdr1, ABCB1, or P-glycoprotein) also participates in the removal of paraquat from the kidneys and protects against renal injury. Paraquat transport and toxicity were quantified in human renal proximal tubule epithelial cells (RPTEC) that endogenously express MDR1, HEK293 cells overexpressing MDR1, and Mdr1a/1b knockout mice. In RPTEC cells, reduction of MDR1 activity using the antagonist PSC833 or siRNA transfection increased the cellular accumulation of paraquat by 50%. Reduced efflux of paraquat corresponded with enhanced cytotoxicity in PSC833-treated cells. Likewise, stable overexpression of the human MDR1 gene in HEK293 cells reduced intracellular levels of paraquat by 50%. In vivo studies assessed the renal accumulation and subsequent nephrotoxicity of paraquat (10 or 30 mg/kg ip) in wild-type and Mdr1a/1b knockout mice. At 4 h after paraquat treatment, renal concentrations of paraquat in the kidneys of Mdr1a/1b knockout mice were 750% higher than wild-type mice. By 72 h, paraquat-treated Mdr1a/1b knockout mice had more extensive tubular degeneration and significantly greater mRNA expression of kidney injury-responsive genes, including kidney injury molecule-1, lipocalin-2, and NAD(P)H quinone oxidoreductase 1, compared with wild-type mice. In conclusion, MDR1/Mdr1 participates in the elimination of paraquat from the kidneys and protects against subsequent toxicity.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Herbicidas , Enfermedades Renales/prevención & control , Túbulos Renales Proximales/metabolismo , Paraquat , Eliminación Renal , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ciclosporinas/farmacología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Herbicidas/metabolismo , Humanos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Paraquat/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , Eliminación Renal/efectos de los fármacos , Factores de Tiempo , Transfección , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...