Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746414

RESUMEN

SARS-CoV-2 continues to be a public health burden, driven in-part by its continued antigenic diversification and resulting emergence of new variants. While increasing herd immunity, current vaccines, and therapeutics have improved outcomes for some; prophylactic and treatment interventions that are not compromised by viral evolution of the Spike protein are still needed. Using a rationally designed SARS-CoV-2 Receptor Binding Domain (RBD) - ACE2 fusion protein and differential selection process with native Omicron RBD protein, we developed a recombinant human monoclonal antibody (hmAb) from a convalescent individual following SARS-CoV-2 Omicron infection. The resulting hmAb, 1301B7 potently neutralized a wide range of SARS-CoV-2 variants including the original Wuhan and more recent Omicron JN.1 strain, as well as SARS-CoV. Structure determination of the SARS-CoV-2 EG5.1 Spike/1301B7 Fab complex by cryo-electron microscopy at 3.1Å resolution demonstrates 1301B7 contacts the ACE2 binding site of RBD exclusively through its VH1-69 heavy chain, making contacts using CDRs1-3, as well as framework region 3 (FR3). Broad specificity is achieved through 1301B7 binding to many conserved residues of Omicron variants including Y501 and H505. Consistent with its extensive binding epitope, 1301B7 is able to potently diminish viral burden in the upper and lower respiratory tract and protect mice from challenge with Omicron XBB1.5 and Omicron JN.1 viruses. These results suggest 1301B7 has broad potential to prevent or treat clinical SARS-CoV-2 infections and to guide development of RBD-based universal SARS-CoV-2 prophylactic vaccines and therapeutic approaches.

2.
Clin Infect Dis ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598658

RESUMEN

BACKGROUND: Although the SARS-CoV-2 vaccines are highly efficacious at preventing severe disease in the general population, current data are lacking regarding vaccine efficacy (VE) for individuals with mild immunocompromising conditions. METHODS: A post-hoc, cross-protocol analysis of participant-level data from the blinded phase of four randomized, placebo-controlled, COVID-19 vaccine phase 3 trials (Moderna, AstraZeneca, Janssen, and Novavax) was performed. We defined a "tempered immune system" (TIS) variable via a consensus panel based on medical history and medications to determine VE against symptomatic and severe COVID-19 cases in TIS participants versus non-TIS (NTIS) individuals starting at 14 days after completion of the primary series through the blinded phase for each of the four trials. An analysis of participants living with well-controlled HIV was conducted using the same methods. RESULTS: 3,852/30,351 (12.7%) Moderna participants, 3,088/29,868 (10.3%) Novavax participants, 3,549/32,380 (11.0%) AstraZeneca participants, and 5,047/43,788 (11.5%) Janssen participants were identified as having a TIS. Most TIS conditions (73.9%) were due to metabolism and nutritional disorders. Vaccination (versus placebo) significantly reduced the likelihood of symptomatic and severe COVID-19 for all participants for each trial. VE was not significantly different for TIS participants vs NTIS for either symptomatic or severe COVID-19 for each trial, nor was VE significantly different in the symptomatic endpoint for participants with HIV. CONCLUSIONS: For individuals with mildly immunocompromising conditions, there is no evidence of differences in VE against symptomatic or severe COVID-19 compared to those with non-tempered immune systems in the four COVID-19 vaccine randomized controlled efficacy trials.

3.
medRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562833

RESUMEN

Background: HIV-1 vaccine development is a global health priority. Broadly neutralizing antibodies (bnAbs) which target the HIV-1 gp41 membrane-proximal external region (MPER) have some of the highest neutralization breadth. An MPER peptide-liposome vaccine has been found to expand bnAb precursors in monkeys. Methods: The HVTN133 phase 1 clinical trial (NCT03934541) studied the MPER-peptide liposome immunogen in 24 HIV-1 seronegative individuals. Participants were recruited between 15 July 2019 and 18 October 2019 and were randomized in a dose-escalation design to either 500 mcg or 2000 mcg of the MPER-peptide liposome or placebo. Four intramuscular injections were planned at months 0, 2, 6, and 12. Results: The trial was stopped prematurely due to an anaphylaxis reaction in one participant ultimately attributed to vaccine-associated polyethylene glycol. The immunogen induced robust immune responses, including MPER+ serum and blood CD4+ T-cell responses in 95% and 100% of vaccinees, respectively, and 35% (7/20) of vaccine recipients had blood IgG memory B cells with MPER-bnAb binding phenotype. Affinity purification of plasma MPER+ IgG demonstrated tier 2 HIV-1 neutralizing activity in two of five participants after 3 immunizations. Conclusions: MPER-peptide liposomes induced gp41 serum neutralizing epitope-targeted antibodies and memory B-cell responses in humans despite the early termination of the study. These results suggest that the MPER region is a promising target for a candidate HIV vaccine.

5.
Nat Commun ; 15(1): 2175, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467646

RESUMEN

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.


Asunto(s)
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Eficacia de las Vacunas , Aminoácidos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
6.
medRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260276

RESUMEN

Background: Broadly neutralizing antibodies (bnAbs) are a promising approach for HIV-1 prevention. In the only bnAb HIV prevention efficacy studies to date, the Antibody Mediated Prevention (AMP) trials, a CD4-binding site targeting bnAb, VRC01, administered intravenously (IV), demonstrated 75% prevention efficacy against highly neutralization-sensitive viruses but was ineffective against less sensitive viruses. Greater efficacy is required before passively administered bnAbs become a viable option for HIV prevention; furthermore subcutaneous (SC) or intramuscular (IM) administration may be preferred. VRC07-523LS is a next-generation bnAb targeting the CD4-binding site and was engineered for increased neutralization breadth and half-life. Methods: Participants were recruited between 02 February 2018 and 09 October 2018. 124 healthy participants without HIV were randomized to receive five VRC07-523LS administrations via IV (T1: 2.5 mg/kg, T2: 5 mg/kg, T3: 20 mg/kg), SC (T4: 2.5 mg/kg, T5: 5 mg/kg) or IM (T6: 2.5 mg/kg or P6: placebo) routes at four-month intervals. Safety data were collected for 144 weeks following the first administration. VRC07-523LS serum concentrations were measured by ELISA after the first dose through Day 112 in all participants and by binding antibody multiplex assay (BAMA) thereafter in 60 participants (10 per treatment group) through Day 784. Compartmental population pharmacokinetic (PK) analyses were conducted to evaluate the VRC07-523LS serum pharmacokinetics. Neutralization activity was measured in a TZM-bl assay and anti-drug antibodies (ADA) were assayed using a tiered bridging assay testing strategy. Results: Injections were well-tolerated, with mild pain or tenderness reported commonly in the SC and IM groups, and mild to moderate erythema or induration reported commonly in the SC groups. Infusions were generally well-tolerated, with infusion reactions reported in 3 of 20 participants in the 20 mg/kg IV group. Peak geometric mean (GM) concentrations (95% confidence intervals) following the first administration were 29.0 µg/mL (25.2, 33.4), 58.5 µg/mL (49.4, 69.3), and 257.2 µg/mL (127.5, 518.9) in T1-T3 with IV dosing; 10.8 µg/mL (8.8, 13.3) and 22.8 µg/mL (20.1, 25.9) in T4-T5 with SC dosing; and 16.4 µg/mL (14.7, 18.2) in T6 with IM dosing. Trough GM concentrations immediately prior to the second administration were 3.4 µg/mL (2.5, 4.6), 6.5 µg/mL (5.6, 7.5), and 27.2 µg/mL (23.9, 31.0) with IV dosing; 0.97 µg/mL (0.65, 1.4) and 3.1 µg/mL (2.2, 4.3) with SC dosing, and 2.6 µg/mL (2.05, 3.31) with IM dosing. Peak VRC07-523LS serum concentrations increased linearly with the administered dose. At a given dose, peak and trough concentrations, as well as serum neutralization titres, were highest in the IV groups, reflecting the lower bioavailability following SC and IM administration. A single participant was found to have low titre ADA at a lone timepoint. VRC07-523LS has an estimated mean half-life of 42 days (95% CI: 40.5, 43.5), approximately twice as long as VRC01. Conclusions: VRC07-523LS was safe and well-tolerated across a range of doses and routes and is a promising long-acting bnAb for inclusion in HIV-1 prevention regimens.

7.
Nat Commun ; 14(1): 8299, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097552

RESUMEN

The Antibody Mediated Prevention (AMP) trials (NCT02716675 and NCT02568215) demonstrated that passive administration of the broadly neutralizing monoclonal antibody VRC01 could prevent some HIV-1 acquisition events. Here, we use mathematical modeling in a post hoc analysis to demonstrate that VRC01 influenced viral loads in AMP participants who acquired HIV. Instantaneous inhibitory potential (IIP), which integrates VRC01 serum concentration and VRC01 sensitivity of acquired viruses in terms of both IC50 and IC80, follows a dose-response relationship with first positive viral load (p = 0.03), which is particularly strong above a threshold of IIP = 1.6 (r = -0.6, p = 2e-4). Mathematical modeling reveals that VRC01 activity predicted from in vitro IC80s and serum VRC01 concentrations overestimates in vivo neutralization by 600-fold (95% CI: 300-1200). The trained model projects that even if future therapeutic HIV trials of combination monoclonal antibodies do not always prevent acquisition, reductions in viremia and reservoir size could be expected.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Anticuerpos Neutralizantes , Carga Viral , Anticuerpos Anti-VIH , Modelos Teóricos
8.
EBioMedicine ; 96: 104799, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37738833

RESUMEN

BACKGROUND: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. METHODS: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7-15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. FINDINGS: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05-0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01-0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. INTERPRETATION: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. FUNDING: National Institutes of Health.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2 , Estados Unidos , Vacunación
10.
Nat Med ; 29(9): 2334-2346, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640860

RESUMEN

Vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection wanes over time, requiring updated boosters. In a phase 2, open-label, randomized clinical trial with sequentially enrolled stages at 22 US sites, we assessed safety and immunogenicity of a second boost with monovalent or bivalent variant vaccines from mRNA and protein-based platforms targeting wild-type, Beta, Delta and Omicron BA.1 spike antigens. The primary outcome was pseudovirus neutralization titers at 50% inhibitory dilution (ID50 titers) with 95% confidence intervals against different SARS-CoV-2 strains. The secondary outcome assessed safety by solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs and AEs of special interest. Boosting with prototype/wild-type vaccines produced numerically lower ID50 titers than any variant-containing vaccine against all variants. Conversely, boosting with a variant vaccine excluding prototype was not associated with decreased neutralization against D614G. Omicron BA.1 or Beta monovalent vaccines were nearly equivalent to Omicron BA.1 + prototype or Beta + prototype bivalent vaccines for neutralization of Beta, Omicron BA.1 and Omicron BA.4/5, although they were lower for contemporaneous Omicron subvariants. Safety was similar across arms and stages and comparable to previous reports. Our study shows that updated vaccines targeting Beta or Omicron BA.1 provide broadly crossprotective neutralizing antibody responses against diverse SARS-CoV-2 variants without sacrificing immunity to the ancestral strain. ClinicalTrials.gov registration: NCT05289037 .


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos ampliamente neutralizantes
12.
PLoS Med ; 20(6): e1004157, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37384638

RESUMEN

BACKGROUND: Patients with chronic lymphocytic leukemia (CLL) have reduced seroconversion rates and lower binding antibody (Ab) and neutralizing antibody (NAb) titers than healthy individuals following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccination. Here, we dissected vaccine-mediated humoral and cellular responses to understand the mechanisms underlying CLL-induced immune dysfunction. METHODS AND FINDINGS: We performed a prospective observational study in SARS-CoV-2 infection-naïve CLL patients (n = 95) and healthy controls (n = 30) who were vaccinated between December 2020 and June 2021. Sixty-one CLL patients and 27 healthy controls received 2 doses of the Pfizer-BioNTech BNT162b2 vaccine, while 34 CLL patients and 3 healthy controls received 2 doses of the Moderna mRNA-1273 vaccine. The median time to analysis was 38 days (IQR, 27 to 83) for CLL patients and 36 days (IQR, 28 to 57) for healthy controls. Testing plasma samples for SARS-CoV-2 anti-spike and receptor-binding domain Abs by enzyme-linked immunosorbent assay (ELISA), we found that all healthy controls seroconverted to both antigens, while CLL patients had lower response rates (68% and 54%) as well as lower median titers (23-fold and 30-fold; both p < 0.001). Similarly, NAb responses against the then prevalent D614G and Delta SARS-CoV-2 variants were detected in 97% and 93% of controls, respectively, but in only 42% and 38% of CLL patients, who also exhibited >23-fold and >17-fold lower median NAb titers (both p < 0.001). Interestingly, 26% of CLL patients failed to develop NAbs but had high-titer binding Abs that preferentially reacted with the S2 subunit of the SARS-CoV-2 spike. Since these patients were also seropositive for endemic human coronaviruses (HCoVs), these responses likely reflect cross-reactive HCoV Abs rather than vaccine-induced de novo responses. CLL disease status, advanced Rai stage (III-IV), elevated serum beta-2 microglobulin levels (ß2m >2.4 mg/L), prior therapy, anti-CD20 immunotherapy (<12 months), and intravenous immunoglobulin (IVIg) prophylaxis were all predictive of an inability to mount SARS-CoV-2 NAbs (all p ≤ 0.03). T cell response rates determined for a subset of participants were 2.8-fold lower for CLL patients compared to healthy controls (0.05, 95% CI 0.01 to 0.27, p < 0.001), with reduced intracellular IFNγ staining (p = 0.03) and effector polyfunctionality (p < 0.001) observed in CD4+ but not in CD8+ T cells. Surprisingly, in treatment-naïve CLL patients, BNT162b2 vaccination was identified as an independent negative risk factor for NAb generation (5.8, 95% CI 1.6 to 27, p = 0.006). CLL patients who received mRNA-1273 had 12-fold higher (p < 0.001) NAb titers and 1.7-fold higher (6.5, 95% CI 1.3 to 32, p = 0.02) response rates than BNT162b2 vaccinees despite similar disease characteristics. The absence of detectable NAbs in CLL patients was associated with reduced naïve CD4+ T cells (p = 0.03) and increased CD8+ effector memory T cells (p = 0.006). Limitations of the study were that not all participants were subjected to the same immune analyses and that pre-vaccination samples were not available. CONCLUSIONS: CLL pathogenesis is characterized by a progressive loss of adaptive immune functions, including in most treatment-naïve patients, with preexisting memory being preserved longer than the capacity to mount responses to new antigens. In addition, higher NAb titers and response rates identify mRNA-1273 as a superior vaccine for CLL patients.


Asunto(s)
COVID-19 , Leucemia Linfocítica Crónica de Células B , Humanos , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , Estudios Prospectivos , SARS-CoV-2 , COVID-19/prevención & control , Vacunación
13.
medRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034641

RESUMEN

In a randomized clinical trial, we compare early neutralizing antibody responses after boosting with bivalent SARS-CoV-2 mRNA vaccines based on either BA.1 or BA.4/BA.5 Omicron spike protein combined with wildtype spike. Responses against SARS-CoV-2 variants exhibited the greatest reduction in titers against currently circulating Omicron subvariants for both bivalent vaccines.

14.
Clin Infect Dis ; 77(4): 560-564, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37036397

RESUMEN

In a randomized clinical trial, we compare early neutralizing antibody responses after boosting with bivalent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines based on either BA.1 or BA.4/BA.5 Omicron spike protein combined with wild-type spike. Responses against SARS-CoV-2 variants exhibited the greatest reduction in titers against currently circulating Omicron subvariants for both bivalent vaccines.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2/genética , Anticuerpos Neutralizantes , Vacunas Combinadas , Anticuerpos Antivirales
15.
Blood Adv ; 7(15): 4200-4214, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-36920790

RESUMEN

Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of inpatients with COVID-19 and correlated the subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+ megakaryocytes that contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-CoV-2-infected primary human megakaryocytes, we demonstrate that megakaryocytes can transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2-containing megakaryocytes are nuclear factor κB (NF-κB)-activated, via p65 and p52; express the NF-κB-mediated cytokines interleukin-6 (IL-6) and IL-1ß; and display high surface expression of Toll-like receptor 2 (TLR2) and TLR4, canonical drivers of NF-κB. In a cohort of 218 inpatients with COVID-19, we correlate frequencies of megakaryocyte subpopulations with clinical outcomes and show that SARS-CoV-2-containing megakaryocytes are a strong risk factor for mortality and multiorgan injury, including respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and intensive care unit admission. Furthermore, we show that SARS-CoV-2+ megakaryocytes are present in lung and brain autopsy tissues from deceased donors who had COVID-19. To our knowledge, this study offers the first evidence implicating SARS-CoV-2+ peripheral megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant investigation in inflammatory disorders beyond COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Megacariocitos/metabolismo , FN-kappa B/metabolismo , Pulmón/metabolismo
16.
Immunity ; 56(4): 847-863.e8, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36958335

RESUMEN

Seasonal influenza vaccination elicits hemagglutinin (HA)-specific memory B (Bmem) cells, and although multiple Bmem cell populations have been characterized, considerable heterogeneity exists. We found that HA-specific human Bmem cells differed in the expression of surface marker FcRL5 and transcriptional factor T-bet. FcRL5+T-bet+ Bmem cells were transcriptionally similar to effector-like memory cells, while T-betnegFcRL5neg Bmem cells exhibited stem-like central memory properties. FcRL5+ Bmem cells did not express plasma-cell-commitment factors but did express transcriptional, epigenetic, metabolic, and functional programs that poised these cells for antibody production. Accordingly, HA+ T-bet+ Bmem cells at day 7 post-vaccination expressed intracellular immunoglobulin, and tonsil-derived FcRL5+ Bmem cells differentiated more rapidly into antibody-secreting cells (ASCs) in vitro. The T-bet+ Bmem cell response positively correlated with long-lived humoral immunity, and clonotypes from T-bet+ Bmem cells were represented in the secondary ASC response to repeat vaccination, suggesting that this effector-like population predicts influenza vaccine durability and recall potential.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/prevención & control , Formación de Anticuerpos , Células B de Memoria , Vacunación , Memoria Inmunológica , Anticuerpos Antivirales
17.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36787249

RESUMEN

BACKGROUNDMosaic and consensus HIV-1 immunogens provide two distinct approaches to elicit greater breadth of coverage against globally circulating HIV-1 and have shown improved immunologic breadth in nonhuman primate models.METHODSThis double-blind randomized trial enrolled 105 healthy HIV-uninfected adults who received 3 doses of either a trivalent global mosaic, a group M consensus (CON-S), or a natural clade B (Nat-B) gp160 env DNA vaccine followed by 2 doses of a heterologous modified vaccinia Ankara-vectored HIV-1 vaccine or placebo. We performed prespecified blinded immunogenicity analyses at day 70 and day 238 after the first immunization. T cell responses to vaccine antigens and 5 heterologous Env variants were fully mapped.RESULTSEnv-specific CD4+ T cell responses were induced in 71% of the mosaic vaccine recipients versus 48% of the CON-S recipients and 48% of the natural Env recipients. The mean number of T cell epitopes recognized was 2.5 (95% CI, 1.2-4.2) for mosaic recipients, 1.6 (95% CI, 0.82-2.6) for CON-S recipients, and 1.1 (95% CI, 0.62-1.71) for Nat-B recipients. Mean breadth was significantly greater in the mosaic group than in the Nat-B group using overall (P = 0.014), prime-matched (P = 0.002), heterologous (P = 0.046), and boost-matched (P = 0.009) measures. Overall T cell breadth was largely due to Env-specific CD4+ T cell responses.CONCLUSIONPriming with a mosaic antigen significantly increased the number of epitopes recognized by Env-specific T cells and enabled more, albeit still limited, cross-recognition of heterologous variants. Mosaic and consensus immunogens are promising approaches to address global diversity of HIV-1.TRIAL REGISTRATIONClinicalTrials.gov NCT02296541.FUNDINGUS NIH grants UM1 AI068614, UM1 AI068635, UM1 AI068618, UM1 AI069412, UL1 RR025758, P30 AI064518, UM1 AI100645, and UM1 AI144371, and Bill & Melinda Gates Foundation grant OPP52282.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Vacunas de ADN , Animales , Consenso , Inmunidad Celular , Vacunación , Virus Vaccinia , Anticuerpos Anti-VIH
18.
J Infect Dis ; 227(8): 939-950, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36348617

RESUMEN

BACKGROUND: Developing a cross-clade, globally effective HIV vaccine remains crucial for eliminating HIV. METHODS: This placebo-controlled, double-blind, phase 1/2a study enrolled healthy HIV-uninfected adults at low risk for HIV infection. They were randomized (1:4:1) to receive 4 doses of an adenovirus 26-based HIV-1 vaccine encoding 2 mosaic Gag and Pol, and 2 mosaic Env proteins plus adjuvanted clade C gp140 (referred to here as clade C regimen), bivalent protein regimen (clade C regimen plus mosaic gp140), or placebo. Primary end points were safety and antibody responses. RESULTS: In total 152/155 participants (clade C, n = 26; bivalent protein, n = 103; placebo, n = 26) received ≥1 injection. The highest adverse event (AE) severity was grade 3 (local pain/tenderness, 12%, 2%, and 0% of the respective groups; solicited systemic AEs, 19%, 15%, 0%). HIV-1 mosaic gp140-binding antibody titers were 79 595 ELISA units (EU)/mL and 137 520 EU/mL in the clade C and bivalent protein groups (P < .001) after dose 4 and 16 862 EU/mL and 25 162 EU/mL 6 months later. Antibody response breadth against clade C gp140 and clade C/non-clade C gp120 was highest in the bivalent protein group. CONCLUSIONS: Adding mosaic gp140 to the clade C regimen increased and broadened the elicited immune response without compromising safety or clade C responses. Clinical Trials Registration. NCT02935686.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Adulto , Humanos , Vectores Genéticos , Anticuerpos Anti-VIH , Infecciones por VIH/prevención & control , Inmunogenicidad Vacunal
19.
iScience ; 25(12): 105544, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36406860

RESUMEN

Umbilical cord blood (UCB) is an irreplaceable source for hematopoietic stem progenitor cells (HSPCs). However, the effects of SARS-CoV-2 infection and COVID-19 vaccination on UCB phenotype, specifically the HSPCs therein, are currently unknown. We thus evaluated any effects of SARS-CoV-2 infection and/or COVID-19 vaccination from the mother on the fate and functionalities of HSPCs in the UCB. The numbers and frequencies of HSPCs in the UCB decreased significantly in donors with previous SARS-CoV-2 infection and more so with COVID-19 vaccination via the induction of apoptosis, likely mediated by IFN-γ-dependent pathways. Two independent hematopoiesis assays, a colony forming unit assay and a mouse humanization assay, revealed skewed hematopoiesis of HSPCs obtained from donors delivered from mothers with SARS-CoV-2 infection history. These results indicate that SARS-CoV-2 infection and COVID-19 vaccination impair the functionalities and survivability of HSPCs in the UCB, which would make unprecedented concerns on the future of HSPC-based therapies.

20.
Nat Microbiol ; 7(12): 1996-2010, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357712

RESUMEN

Measuring immune correlates of disease acquisition and protection in the context of a clinical trial is a prerequisite for improved vaccine design. We analysed binding and neutralizing antibody measurements 4 weeks post vaccination as correlates of risk of moderate to severe-critical COVID-19 through 83 d post vaccination in the phase 3, double-blind placebo-controlled phase of ENSEMBLE, an international randomized efficacy trial of a single dose of Ad26.COV2.S. We also evaluated correlates of protection in the trial cohort. Of the three antibody immune markers we measured, we found most support for 50% inhibitory dilution (ID50) neutralizing antibody titre as a correlate of risk and of protection. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; P = 0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43%, 72%) at non-quantifiable ID50 (<2.7 IU50 ml-1) and increased to 89% (78%, 96%) at ID50 = 96.3 IU50 ml-1. Comparison of the vaccine efficacy by ID50 titre curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine and the COV002-UK trial of the AZD1222 vaccine supported the ID50 titre as a correlate of protection across trials and vaccine types.


Asunto(s)
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Vacuna nCoV-2019 mRNA-1273 , Eficacia de las Vacunas , Anticuerpos Neutralizantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...