Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(11): e2310109, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38037437

RESUMEN

Nanodiamonds (ND) hold great potential for diverse applications due to their biocompatibility, non-toxicity, and versatile functionalization. Direct visualization of ND by means of non-invasive imaging techniques will open new venues for labeling and tracking, offering unprecedented and unambiguous detection of labeled cells or nanodiamond-based drug carrier systems. The structural defects in diamonds, such as vacancies, can have paramagnetic properties and potentially act as contrast agents in magnetic resonance imaging (MRI). The smallest nanoscale diamond particles, detonation ND, are reported to effectively reduce longitudinal relaxation time T1 and provide signal enhancement in MRI. Using in vivo, chicken embryos, direct visualization of ND is demonstrated as a bright signal with high contrast to noise ratio. At 24 h following intravascular application marked signal enhancement is noticed in the liver and the kidneys, suggesting uptake by the phagocytic cells of the reticuloendothelial system (RES), and in vivo labeling of these cells. This is confirmed by visualization of nanodiamond-labeled macrophages as positive (bright) signal, in vitro. Macrophage cell labeling is not associated with significant increase in pro-inflammatory cytokines or marked cytotoxicity. These results indicate nanodiamond as a novel gadolinium-free contrast-enhancing agent with potential for cell labeling and tracking and over periods of time.


Asunto(s)
Nanodiamantes , Embrión de Pollo , Animales , Nanodiamantes/química , Imagen por Resonancia Magnética/métodos , Hígado/diagnóstico por imagen , Macrófagos , Portadores de Fármacos/farmacología
2.
Phys Rev Lett ; 131(3): 036201, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37540862

RESUMEN

Magnetic multilayers with a separating insulating layer are used in a multitude of functional devices. Controlling the magnetic properties of such devices with an electric field has the potential to vastly enhance their performance. Nevertheless, experimental methods to study the origin of electric-field-induced effects on buried interfaces remain elusive. By using element selective x-ray resonant magnetic reflectometry we are able to gain access to changes in the electronic structure of interfacial atoms caused by an electric field. With this method it is possible to probe interfacial states at the Fermi energy. In a multilayer stack with a Ni/SiO_{2} interface, we find that the electric field slightly shifts the Ni L_{3}-edge in energy, which indicates a change of the oxidation state of interfacial Ni atoms. Further analysis of the strength of the effect reveals that only about 30% of the electrons moved by the electric field end up in interfacial Ni states.

3.
Nat Commun ; 13(1): 2462, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513369

RESUMEN

Magnetic droplets are non-topological magnetodynamical solitons displaying a wide range of complex dynamic phenomena with potential for microwave signal generation. Bubbles, on the other hand, are internally static cylindrical magnetic domains, stabilized by external fields and magnetostatic interactions. In its original theory, the droplet was described as an imminently collapsing bubble stabilized by spin transfer torque and, in its zero-frequency limit, as equivalent to a bubble. Without nanoscale lateral confinement, pinning, or an external applied field, such a nanobubble is unstable, and should collapse. Here, we show that we can freeze dynamic droplets into static nanobubbles by decreasing the magnetic field. While the bubble has virtually the same resistance as the droplet, all signs of low-frequency microwave noise disappear. The transition is fully reversible and the bubble can be thawed back into a droplet if the magnetic field is increased under current. Whereas the droplet collapses without a sustaining current, the bubble is highly stable and remains intact for days without external drive. Electrical measurements are complemented by direct observation using scanning transmission x-ray microscopy, which corroborates the analysis and confirms that the bubble is stabilized by pinning.

4.
Nat Commun ; 11(1): 949, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075968

RESUMEN

Skyrmions, magnetic textures with topological stability, hold promises for high-density and energy-efficient information storage devices owing to their small size and low driving-current density. Precise creation of a single nanoscale skyrmion is a prerequisite to further understand the skyrmion physics and tailor skyrmion-based applications. Here, we demonstrate the creation of individual skyrmions at zero-field in an exchange-biased magnetic multilayer with exposure to soft X-rays. In particular, a single skyrmion with 100-nm size can be created at the desired position using a focused X-ray spot of sub-50-nm size. This single skyrmion creation is driven by the X-ray-induced modification of the antiferromagnetic order and the corresponding exchange bias. Furthermore, artificial skyrmion lattices with various arrangements can be patterned using X-ray. These results demonstrate the potential of accurate optical control of single skyrmion at sub-100 nm scale. We envision that X-ray could serve as a versatile tool for local manipulation of magnetic orders.

5.
Small ; 15(34): e1902353, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31257719

RESUMEN

The discovery of the high maximum energy product of 59 MGOe for NdFeB magnets is a breakthrough in the development of permanent magnets with a tremendous impact in many fields of technology. This value is still the world record, for 40 years. This work reports on a reliable and robust route to realize nearly perfectly ordered L10 -phase FePt nanoparticles, leading to an unprecedented energy product of 80 MGOe at room temperature. Furthermore, with a 3 nm Au coverage, the magnetic polarization of these nanomagnets can be enhanced by 25% exceeding 1.8 T. This exceptional magnetization and anisotropy is confirmed by using multiple imaging and spectroscopic methods, which reveal highly consistent results. Due to the unprecedented huge energy product, this material can be envisaged as a new advanced basic magnetic component in modern micro and nanosized devices.

6.
ACS Nano ; 13(5): 5655-5661, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-30977633

RESUMEN

A ferromagnetic barrier thinner than the coherence length in high-temperature superconductors is realized in the multilayers of YBa2Cu3O7-δ and La0.67Ca0.33MnO3. We used epitaxial growth of YBCO on ⟨110⟩ SrTiO3 substrates by pulsed laser deposition to prepare thin superconducting films with copper oxide planes oriented at an angle to the substrate surface. Subsequent deposition of LCMO and finally a second YBCO layer produces a superconductor/ferromagnet/superconductor trilayer containing an ultrathin ferromagnetic barrier with sophisticated geometry at which the long axis of coherence length ovoid of YBCO is pointing across the LCMO ferromagnetic layer. A detailed characterization of this structure is achieved using high-resolution electron microscopy.

7.
Phys Rev Lett ; 120(21): 217204, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883139

RESUMEN

Magnetic droplets are nontopological dynamical solitons that can be nucleated in nanocontact based spin torque nano-oscillators (STNOs) with perpendicular magnetic anisotropy free layers. While theory predicts that the droplet should be of the same size as the nanocontact, its inherent drift instability has thwarted attempts at observing it directly using microscopy techniques. Here, we demonstrate highly stable magnetic droplets in all-perpendicular STNOs and present the first detailed droplet images using scanning transmission X-ray microscopy. In contrast to theoretical predictions, we find that the droplet diameter is about twice as large as the nanocontact. By extending the original droplet theory to properly account for the lateral current spread underneath the nanocontact, we show that the large discrepancy primarily arises from current-in-plane Zhang-Li torque adding an outward pressure on the droplet perimeter. Electrical measurements on droplets nucleated using a reversed current in the antiparallel state corroborate this picture.

8.
Beilstein J Nanotechnol ; 7: 733-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27335762

RESUMEN

We investigate the rich magnetic switching properties of nanoscale antidot lattices in the 200 nm regime. In-plane magnetized Fe, Co, and Permalloy (Py) as well as out-of-plane magnetized GdFe antidot films are prepared by a modified nanosphere lithography allowing for non-close packed voids in a magnetic film. We present a magnetometry protocol based on magneto-optical Kerr microscopy elucidating the switching modes using first-order reversal curves. The combination of various magnetometry and magnetic microscopy techniques as well as micromagnetic simulations delivers a thorough understanding of the switching modes. While part of the investigations has been published before, we summarize these results and add significant new insights in the magnetism of exchange-coupled antidot lattices.

9.
Beilstein J Nanotechnol ; 7: 1936-1947, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144542

RESUMEN

The possibility to attain ferromagnetic properties in transparent semiconductor oxides such as ZnO is very promising for future spintronic applications. We demonstrate in this review that ferromagnetism is not an intrinsic property of the ZnO crystalline lattice but is that of ZnO/ZnO grain boundaries. If a ZnO polycrystal contains enough grain boundaries, it can transform into the ferromagnetic state even without doping with "magnetic atoms" such as Mn, Co, Fe or Ni. However, such doping facilitates the appearance of ferromagnetism in ZnO. It increases the saturation magnetisation and decreases the critical amount of grain boundaries needed for FM. A drastic increase of the total solubility of dopants in ZnO with decreasing grain size has been also observed. It is explained by the multilayer grain boundary segregation.

11.
Nanotechnology ; 26(22): 225203, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25969389

RESUMEN

Investigations of geometric frustrations in magnetic antidot lattices have led to the observation of interesting phenomena like spin-ice and magnetic monopoles. By using highly focused magneto-optical Kerr effect measurements and x-ray microscopy with magnetic contrast we deduce that geometrical frustration in these nanostructured thin film systems also leads to an out-of-plane magnetization from a purely in-plane applied magnetic field. For certain orientations of the antidot lattice, formation of perpendicular magnetic domains has been found with a size of several µm that may be used for an in-plane/out-of-plane transducer.

12.
Sci Rep ; 5: 8871, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25747456

RESUMEN

Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non-magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides.

13.
Nat Commun ; 6: 6045, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25599854

RESUMEN

LiFePO4 is one of the most frequently studied positive electrode materials for lithium-ion batteries during the last years. Nevertheless, there is still an extensive debate on the mechanism of phase transformation. On the one hand this is due to the small energetic differences involved and hence the great sensitivity with respect to parameters such as size and morphology. On the other hand this is due to the lack of in situ observations with appreciable space and time resolution. Here we present scanning transmission X-ray microscopy measurements following in situ the phase boundary propagation within a LiFePO4 single crystal along the (010) orientation during electrochemical lithiation/delithiation. We follow, on a battery-relevant timescale, the evolution of a two-phase-front on a micrometre scale with a lateral resolution of 30 nm and with minutes of time resolution. The growth pattern is found to be dominated by elastic effects rather than being transport-controlled.

14.
Adv Mater ; 26(38): 6554-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25103570

RESUMEN

The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.


Asunto(s)
Nanoestructuras/química , Análisis Espectral , Fenómenos Ópticos , Rayos X
15.
Rev Sci Instrum ; 85(2): 023901, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24593373

RESUMEN

First-order reversal curves (FORC) are a powerful method for magnetic sample characterization, separating all magnetic states of an investigated system according to their coercivity and internal magnetic interactions. A major drawback of using measurement techniques like VSM or SQUID, typically applied for FORC acquisition, is the long measurement time, limiting the resolution and the number of measurements due to time constraints. Faster techniques like MOKE result in problems regarding measurement stability over the curse of the acquisition of many minor loops, due to drift and non-absolute magnetization values. Here, we present an approach using a specialized field shape providing two anchor points for each minor loop for applying the magneto-optical Kerr effect (MOKE) technique to FORC measurements. This results in a high field resolution while keeping the total acquisition time to only a few minutes. MOKE FORC measurements are exemplarily applied to a simple permalloy film, an exchange-bias system, and a Gd/Fe multilayer system with perpendicular magnetic anisotropy, showcasing the versatility of the method.

16.
Nanotechnology ; 24(46): 465709, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24172909

RESUMEN

We study the reversal mechanisms in a self-assembled, hexagonally ordered Fe antidot array with a period of 200 nm and an antidot diameter of 100 nm which was prepared by polystyrene nanosphere lithography. Direction-dependent information in such a self-assembled sample is obtained by measuring the anisotropic magnetoresistance (AMR) through constrictions processed by focused ion beam milling in nearest neighbor and next nearest neighbor directions. We show that such an originally integral method can be used to investigate the strong in-plane anisotropy introduced by the antidot lattice. The easy and hard axis reversal mechanisms and corresponding AMR signals are modeled by micromagnetic simulations. Additional in-field magnetic force microscopy studies allow the correlation of microscopic switching to features in the integral AMR. We find that the easy axis of magnetization is connected to a distinct periodic magnetic domain pattern, which can be observed during the whole magnetization reversal. While this process is driven by nucleation and propagation of reversed domains, the hard axis reversal is characterized by a (stepwise) rotation of the magnetization via the antidot lattice' easy axes.

17.
Beilstein J Nanotechnol ; 4: 361-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844341

RESUMEN

The influence of the grain boundary (GB) specific area s GB on the appearance of ferromagnetism in Fe-doped ZnO has been analysed. A review of numerous research contributions from the literature on the origin of the ferromagnetic behaviour of Fe-doped ZnO is given. An empirical correlation has been found that the value of the specific grain boundary area s GB is the main factor controlling such behaviour. The Fe-doped ZnO becomes ferromagnetic only if it contains enough GBs, i.e., if s GB is higher than a certain threshold value s th = 5 × 10(4) m(2)/m(3). It corresponds to the effective grain size of about 40 µm assuming a full, dense material and equiaxial grains. Magnetic properties of ZnO dense nanograined thin films doped with iron (0 to 40 atom %) have been investigated. The films were deposited by using the wet chemistry "liquid ceramics" method. The samples demonstrate ferromagnetic behaviour with J s up to 0.10 emu/g (0.025 µB/f.u.ZnO) and coercivity H c ≈ 0.03 T. Saturation magnetisation depends nonmonotonically on the Fe concentration. The dependence on Fe content can be explained by the changes in the structure and contiguity of a ferromagnetic "grain boundary foam" responsible for the magnetic properties of pure and doped ZnO.

18.
Opt Express ; 21(10): 11747-56, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23736396

RESUMEN

Fresnel Zone Plates (FZP) are to date very successful focusing optics for X-rays. Established methods of fabrication are rather complex and based on electron beam lithography (EBL). Here, we show that ion beam lithography (IBL) may advantageously simplify their preparation. A FZP operable from the extreme UV to the limit of the hard X-ray was prepared and tested from 450 eV to 1500 eV. The trapezoidal profile of the FZP favorably activates its 2nd order focus. The FZP with an outermost zone width of 100 nm allows the visualization of features down to 61, 31 and 21 nm in the 1st, 2nd and 3rd order focus respectively. Measured efficiencies in the 1st and 2nd order of diffraction reach the theoretical predictions.


Asunto(s)
Iones Pesados , Microscopía/instrumentación , Fotograbar/instrumentación , Refractometría/instrumentación , Difracción de Rayos X/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
19.
Microsc Microanal ; 17(5): 834-42, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21864447

RESUMEN

The soft X-ray energy range provides important detection capabilities for a wide range of material systems, e.g., the K-edge behavior of biological materials or magnetic contrast imaging at the L2,3- and M4,5-edges, respectively, using the X-ray magnetic circular dichroism effect. The need for thinned samples due to the short penetration depth of soft X-rays is a limiting factor for microscopic imaging in transmission microscopy. In contrast, the more surface sensitive photoelectron emission microscopy allows the X-ray microscopic investigation of nontransparent bulk samples, but only small magnetic fields and very smooth surfaces are possible. As both high magnetic fields as well as bulk samples are important for magnetic imaging, we present total electron yield (TEY) microscopy results using the total sample current detection performed at the new ultra high vacuum scanning microscope "MAXYMUS" at HZB/BESSY II. We compare synchronous measurements in TEY and transmission mode to demonstrate the capabilities of TEY microscopy. Pictures and spectra with high absorption contrast and three-dimensional-like edge enhancement are observed as known for scanning electron microscopy. This unveils details on smallest length scales of the surface morphology. Furthermore, surface sensitive in- and out-of-plane magnetic TEY measurements at nontransparent samples are shown.

20.
Nat Mater ; 10(3): 189-93, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21297622

RESUMEN

The occupation of d orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties, but could not thus far be probed in a quantitative manner. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of ~3% in the occupation of Ni e(g) orbitals in adjacent atomic layers of a LaNiO(3)-LaAlO(3) superlattice, in good agreement with ab initio electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in transition-metal oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...