Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 81(1): 37, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063979

RESUMEN

In varied environments, microorganisms search for partners or nutritional resources using chemical signals. Microbes are drawn (chemotaxis) or grow directionally (chemotropism) towards the chemical source, enabling them to establish and maintain symbiosis. The hypocrealean fungi Escovopsis enhance their growth towards the basidiomycete fungus Leucoagaricus gongylophorus, which is cultivated by leaf-cutting attine ants for food. Although directional growth is well documented in this symbiosis, it is unclear whether non-volatile or volatile organic compounds participate in the interaction between cultivar and Escovopsis, and which specific chemical compounds might attract and induce chemotropism. In this study, we examined the growth responses of Escovopsis isolates to non-volatile and volatile organic compounds produced by fungal cultivars of higher attine ants. We also isolated and identified molecules released by the ant-cultivar and assessed the chemotropism of Escovopsis towards them. Our results indicate that the growth of Escovopsis is stimulated in the presence of both non-volatile and volatile compounds from fungal cultivars. We also identified three isomeric diketopiperazines molecules from crude extracts of the ant cultivar, suggesting that these might play a role in Escovopsis chemotropism. Our findings provide insights into the complex chemical interactions that govern the association between Escovopsis and fungal cultivars.


Asunto(s)
Hormigas , Compuestos Orgánicos Volátiles , Animales , Hormigas/microbiología , Quimiotaxis , Simbiosis
2.
Ecol Evol ; 12(7): e9112, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35866016

RESUMEN

Leaf-cutting ants and their fungal crops are a textbook example of a long-term obligatory mutualism. Many microbes continuously enter their nest containing the fungal cultivars, destabilizing the symbiosis and, in some cases, outcompeting the mutualistic partners. Preferably, the ant workers should distinguish between different microorganisms to respond according to their threat level and recurrence in the colony. To address these assumptions, we investigated how workers of Atta sexdens sanitize their fungal crop toward five different fungi commonly isolated from the fungus gardens: Escovopsis sp., Fusarium oxysporum, Metarhizium anisopliae, Trichoderma spirale, and Syncephalastrum sp. Also, to investigate the plasticity of these responses toward recurrences of these fungi, we exposed the colonies with each fungus three times fourteen days apart. As expected, intensities in sanitization differed according to the fungal species. Ants significantly groom their fungal crop more toward F. oxysporum, M. anisopliae, and Syncephalastrum sp. than toward Escovopsis sp. and T. spirale. Weeding, self-, and allogrooming were observed in less frequency than fungus grooming in all cases. Moreover, we detected a significant increase in the overall responses after repeated exposures for each fungus, except for Escovopsis sp. Our results indicate that A. sexdens workers are able to distinguish between different fungi and apply distinct responses to remove these from the fungus gardens. Our findings also suggest that successive exposures to the same antagonist increase hygiene, indicating plasticity of ant colonies' defenses to previously encountered pathogens.

3.
Front Microbiol ; 12: 673444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194409

RESUMEN

Health and disease emerge from intricate interactions between genotypes, phenotypes, and environmental features. The outcomes of such interactions are context-dependent, existing as a dynamic continuum ranging from benefits to damage. In host-microbial interactions, both the host and environmental conditions modulate the pathogenic potential of a microorganism. Microbial interactions are the core of the agricultural systems of ants in the subtribe Attina, which cultivate basidiomycete fungi for food. The fungiculture environment harbors a diverse microbial community, including fungi in the genus Escovopsis that has been studied as damage-causing agent. Here, we consider the ant colony as a host and investigate to what extent its health impacts the dynamics and outcomes of host-Escovopsis interactions. We found that different ant fungal cultivars vary in susceptibility to the same Escovopsis strains in plate-assays interactions. In subcolony-Escovopsis interactions, while healthy subcolonies gradually recover from infection with different concentrations of Escovopsis conidia, insecticide-treated subcolonies evidenced traits of infection and died within 7 days. The opportunistic nature of Escovopsis infections indicates that diseases in attine fungiculture are a consequence of host susceptibility, rather than the effect of a single microbial agent. By addressing the host susceptibility as a major modulator of Escovopsis pathogenesis, our findings expand the understanding of disease dynamics within attine colonies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA