Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 7(3)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35997427

RESUMEN

Natural photonic structures are common across the biological kingdoms, serving a diversity of functionalities. The study of implications of photonic structures in plants and other phototrophic organisms is still hampered by missing methodologies for determining in situ photonic properties, particularly in the context of constantly adapting photosynthetic systems controlled by acclimation mechanisms on the cellular scale. We describe an innovative approach to determining spatial and spectral photonic properties and photosynthesis activity, employing micro-Fourier Image Spectroscopy and Pulse Amplitude Modulated Chlorophyll Fluorimetry in a combined microscope setup. Using two examples from the photosynthetic realm, the dynamic Bragg-stack-like thylakoid structures of Begonia sp. and complex 2.5 D photonic crystal slabs from the diatom Coscinodiscus granii, we demonstrate how the setup can be used for measuring self-adapting photonic-photosynthetic systems and photonic properties on single-cell scales. We suggest that the setup is well-suited for the determination of photonic-photosynthetic systems in a diversity of organisms, facilitating the cellular, temporal, spectral and angular resolution of both light distribution and combined chlorophyll fluorescence determination. As the catalogue of photonic structure from photosynthetic organisms is rich and diverse in examples, a deepened study could inspire the design of novel optical- and light-harvesting technologies.

2.
ISME J ; 16(3): 822-832, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34635793

RESUMEN

Foraminifera are ubiquitously distributed in marine habitats, playing a major role in marine sediment carbon sequestration and the nitrogen cycle. They exhibit a wide diversity of feeding and behavioural strategies (heterotrophy, autotrophy and mixotrophy), including species with the ability of sequestering intact functional chloroplasts from their microalgal food source (kleptoplastidy), resulting in a mixotrophic lifestyle. The mechanisms by which kleptoplasts are integrated and kept functional inside foraminiferal cytosol are poorly known. In our study, we investigated relationships between feeding strategies, kleptoplast spatial distribution and photosynthetic functionality in two shallow-water benthic foraminifera (Haynesina germanica and Elphidium williamsoni), both species feeding on benthic diatoms. We used a combination of observations of foraminiferal feeding behaviour, test morphology, cytological TEM-based observations and HPLC pigment analysis, with non-destructive, single-cell level imaging of kleptoplast spatial distribution and PSII quantum efficiency. The two species showed different feeding strategies, with H. germanica removing diatom content at the foraminifer's apertural region and E. williamsoni on the dorsal site. All E. williamsoni parameters showed that this species has higher autotrophic capacity albeit both feeding on benthic diatoms. This might represent two different stages in the evolutionary process of establishing a permanent symbiotic relationship, or may reflect different trophic strategies.


Asunto(s)
Diatomeas , Foraminíferos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Procesos Heterotróficos , Fotosíntesis
3.
Faraday Discuss ; 223(0): 261-277, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32725039

RESUMEN

Photonics, the manipulation of light at nanoscale, is a key enabling technology with impact in health and energy applications, among others. In most cases photonics still relies on materials and fabrication methods inherited from other disciplines, usually requiring expensive, time-consuming and environmentally-unfriendly processes. Recent experiments demonstrated that advanced photonic materials, as complex as those known as 2.5 dimensional slab photonic crystals, also occur naturally in diatoms. These microscopic algae precipitate silicic acid from water to produce silicon dioxide membranes, relying on intracellular biomineralization mechanisms. Addressing some important aspects for the potential industrial utilization of these structures, we here propose that optical materials produced by the diatoms could serve as cost-effective and environmentally friendly alternatives to cleanroom nanofabrication. We demonstrate that photonic materials grown by the diatom species Coscinodiscus granii can be separated based on its hydrokinetic characteristics. We further show that the photonic membranes present low defect rates of ca. 1/100 unit cells and that variation in pore diameter, as observed between individual membranes, can affect the photonic properties at large, but only marginally at low refractive index contrast. Finally, we list algal culture collections operating worldwide, thus providing a global network for live diatoms and diatom materials. We discuss the feasibility and bottlenecks related to scaled-up growth for direct utilization of photonic materials from diatoms.


Asunto(s)
Óptica y Fotónica , Dióxido de Silicio/química , Cristalización , Diatomeas/química , Cinética , Nanoestructuras/química
4.
Adv Sci (Weinh) ; 7(10): 1903726, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32440485

RESUMEN

Slab photonic crystals (PhCs) are photonic structures used in many modern optical technologies. Fabrication of these components is costly and usually involves eco-unfriendly methods, requiring modern nanofabrication techniques and cleanroom facilities. This work describes that diatom microalgae evolved elaborate and highly reproducible slab PhCs in the girdle, a part of their silicon dioxide exoskeletons. Under natural conditions in water, the girdle of the centric diatom Coscinodiscus granii shows a well-defined optical pseudogap for modes in the near-infrared (NIR). This pseudogap shows dispersion toward the visible spectral range when light is incident at larger angles, eventually facilitating in-plane propagation for modes in the green spectral range. The optical features can be modulated with refractive index contrast. The unit cell period, a critical factor controlling the pseudogap, is highly preserved within individuals of a long-term cultivated inbred line and between at least four different C. granii cell culture strains tested in this study. Other diatoms present similar unit cell morphologies with various periods. Diatoms thereby offer a wide range of PhC structures, reproducible and equipped with well-defined properties, possibly covering the entire UV-vis-NIR spectral range. Diatoms therefore offer an alternative as cost-effective and environmentally friendly produced photonic materials.

5.
Interface Focus ; 9(1): 20180031, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30603064

RESUMEN

Diatoms are phototrophic single-celled microalgae encased in a cell wall (frustule) made of amorphous silicate. The frustule comprises two valves connected by a variable number of girdle bands, all exhibiting periodic micro/nanoporous structures. We studied the optical properties in water of girdle bands from the centric diatom Coscinodiscus granii, a frustule part that so far has received little attention by the scientific community. We show that valves and girdle bands exhibit different optical properties, as valves attenuate shorter wavelengths and girdle bands attenuate longer wavelengths of the visible light spectrum. Girdle bands show iridescent coloration in dependence of the light direction. Although the biological meaning of periodic nanoscale structures of frustules is still a matter of debate, the differences of valve and girdle band optical properties indicate that living diatoms are complex optical systems, where valves, girdles and pigments modulate light inside the cell.

6.
New Phytol ; 219(1): 122-134, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29672846

RESUMEN

The optical properties of diatom silicate frustules inspire photonics and nanotechnology research. Whether light interaction with the nano-structure of the frustule also affects diatom photosynthesis has remained unclear due to lack of information on frustule optical properties under more natural conditions. Here we demonstrate that the optical properties of the frustule valves in water affect light harvesting and photosynthesis in live cells of centric diatoms (Coscinodiscus granii). Microscale cellular mapping of photosynthesis around localized spot illumination demonstrated optical coupling of chloroplasts to the valve wall. Photonic structures of the three-layered C. granii valve facilitated light redistribution and efficient photosynthesis in cell regions distant from the directly illuminated area. The different porous structure of the two sides of the valve exhibited photon trapping and forward scattering of blue light enhancing photosynthetic active radiation inside the cell. Photonic structures of diatom frustules thus alter the cellular light field with implications on diatom photobiology.


Asunto(s)
Diatomeas/fisiología , Nanoestructuras/ultraestructura , Fotobiología , Fotosíntesis/fisiología , Silicatos/metabolismo , Cloroplastos/metabolismo , Diatomeas/química , Diatomeas/efectos de la radiación , Diatomeas/ultraestructura , Luz , Microscopía Electrónica de Rastreo , Nanoestructuras/efectos de la radiación , Nanotecnología , Óptica y Fotónica
7.
Funct Plant Biol ; 44(7): 665-678, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32480597

RESUMEN

The halophytic crop quinoa (Chenopodium quinoa Willd.) is adapted to soil salinity and cold climate, but recent investigations have shown that quinoa can be grown in significantly warmer latitudes, i.e. the Mediterranean region, where high temperature and soil salinity can occur in combination. In this greenhouse study, effects of saltwater irrigation and high temperature on growth and development of the Bolivian cultivar 'Achachino' were determined. Development was slightly delayed in response to saltwater treatment, but significantly faster at high temperature. Biomass and seed yield decreased in response to salt, but not to high temperature. Plants increased their number of stomata in response to salt stress, but reduced its size on both sides of the leaf, whereas high temperature treatment significantly increased the stomata size on the abaxial leaf surface. When salt and high temperature was combined, the size of stomata was reduced only on the abaxial side of the leaf, and the number of epidermal bladder cells significantly increased on the abaxial leaf surface, resulting in preservation of photosynthetic quantum yields. We hypothesise that this morphological plasticity improves the partition of water and CO2 resulting in maintenance of photosynthesis in quinoa under adverse environmental conditions. We present a GLM-model that predicts yield parameters of quinoa grown in regions affected by soil salinity, high temperature and the factors combined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...