Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 13(12)2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38136645

RESUMEN

The universally conserved protein YidC aids in the insertion and folding of transmembrane polypeptides. Supposedly, a charged arginine faces its hydrophobic lipid core, facilitating polypeptide sliding along YidC's surface. How the membrane barrier to other molecules may be maintained is unclear. Here, we show that the purified and reconstituted E. coli YidC forms an ion-conducting transmembrane pore upon ribosome or ribosome-nascent chain complex (RNC) binding. In contrast to monomeric YidC structures, an AlphaFold parallel YidC dimer model harbors a pore. Experimental evidence for a dimeric assembly comes from our BN-PAGE analysis of native vesicles, fluorescence correlation spectroscopy studies, single-molecule fluorescence photobleaching observations, and crosslinking experiments. In the dimeric model, the conserved arginine and other residues interacting with nascent chains point into the putative pore. This result suggests the possibility of a YidC-assisted insertion mode alternative to the insertase mechanism.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Escherichia coli/metabolismo , Ribosomas/metabolismo , Arginina/metabolismo , Membrana Celular/metabolismo
2.
Small ; 19(16): e2205968, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683221

RESUMEN

The voltage-gated proton channel, HV 1, is crucial for innate immune responses. According to alternative hypotheses, protons either hop on top of an uninterrupted water wire or bypass titratable amino acids, interrupting the water wire halfway across the membrane. To distinguish between both hypotheses, the water mobility for the putative case of an uninterrupted wire is estimated. The predicted single-channel water permeability 2.3 × 10-12 cm3 s-1 reflects the permeability-governing number of hydrogen bonds between water molecules in single-file configuration and pore residues. However, the measured unitary water permeability does not confirm the predicted value. Osmotic deflation of reconstituted lipid vesicles reveals negligible water permeability of the HV 1 wild-type channel and the D174A mutant open at 0 mV. The conductance of 1400 H+ s-1 per wild-type channel agrees with the calculated diffusion limit for a ≈2 Å capture radius for protons. Removal of a charged amino acid (D174) at the pore mouth decreases H+ conductance by reducing the capture radius. At least one intervening amino acid contributes to H+ conductance while interrupting the water wire across the membrane.


Asunto(s)
Canales Iónicos , Protones , Canales Iónicos/metabolismo , Agua/química
3.
Nat Protoc ; 18(1): 239-264, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323866

RESUMEN

Cryogenic electron microscopy (cryo-EM) data represent density maps of macromolecular systems at atomic or near-atomic resolution. However, building and refining 3D atomic models by using data from cryo-EM maps is not straightforward and requires significant hands-on experience and manual intervention. We recently developed StarMap, an easy-to-use interface between the popular structural display program ChimeraX and Rosetta, a powerful molecular modeling engine. StarMap offers a general approach for refining structural models of biological macromolecules into cryo-EM density maps by combining Monte Carlo sampling with local density-guided optimization, Rosetta-based all-atom refinement and real-space B-factor calculations in a straightforward workflow. StarMap includes options for structural symmetry, local refinements and independent model validation. The overall quality of the refinement and the structure resolution is then assessed via analytical outputs, such as magnification calibration (pixel size calibration) and Fourier shell correlations. Z-scores reported by StarMap provide an easily interpretable indicator of the goodness of fit for each residue and can be plotted to evaluate structural models and improve local residue refinements, as well as to identify flexible regions and potentially functional sites in large macromolecular complexes. The protocol requires general computer skills, without the need for coding expertise, because most parts of the workflow can be operated by clicking tabs within the ChimeraX graphical user interface. Time requirements for the model refinement depend on the size and quality of the input data; however, this step can typically be completed within 1 d. The analytical parts of the workflow are completed within minutes.


Asunto(s)
Estructura Molecular , Flujo de Trabajo , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Conformación Proteica , Sustancias Macromoleculares
4.
Nature ; 609(7927): 630-639, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002576

RESUMEN

The Holliday junction is a key intermediate formed during DNA recombination across all kingdoms of life1. In bacteria, the Holliday junction is processed by two homo-hexameric AAA+ ATPase RuvB motors, which assemble together with the RuvA-Holliday junction complex to energize the strand-exchange reaction2. Despite its importance for chromosome maintenance, the structure and mechanism by which this complex facilitates branch migration are unknown. Here, using time-resolved cryo-electron microscopy, we obtained structures of the ATP-hydrolysing RuvAB complex in seven distinct conformational states, captured during assembly and processing of a Holliday junction. Five structures together resolve the complete nucleotide cycle and reveal the spatiotemporal relationship between ATP hydrolysis, nucleotide exchange and context-specific conformational changes in RuvB. Coordinated motions in a converter formed by DNA-disengaged RuvB subunits stimulate hydrolysis and nucleotide exchange. Immobilization of the converter enables RuvB to convert the ATP-contained energy into a lever motion, which generates the pulling force driving the branch migration. We show that RuvB motors rotate together with the DNA substrate, which, together with a progressing nucleotide cycle, forms the mechanistic basis for DNA recombination by continuous branch migration. Together, our data decipher the molecular principles of homologous recombination by the RuvAB complex, elucidate discrete and sequential transition-state intermediates for chemo-mechanical coupling of hexameric AAA+ motors and provide a blueprint for the design of state-specific compounds targeting AAA+ motors.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Bacterianas , ADN Helicasas , ADN Cruciforme , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/ultraestructura , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , ADN Cruciforme/química , ADN Cruciforme/metabolismo , ADN Cruciforme/ultraestructura , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Recombinación Homóloga , Hidrólisis , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/ultraestructura , Nucleótidos , Conformación Proteica , Rotación
5.
Nat Commun ; 12(1): 1546, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750771

RESUMEN

Many bacterial pathogens rely on virulent type III secretion systems (T3SSs) or injectisomes to translocate effector proteins in order to establish infection. The central component of the injectisome is the needle complex which assembles a continuous conduit crossing the bacterial envelope and the host cell membrane to mediate effector protein translocation. However, the molecular principles underlying type III secretion remain elusive. Here, we report a structure of an active Salmonella enterica serovar Typhimurium needle complex engaged with the effector protein SptP in two functional states, revealing the complete 800Å-long secretion conduit and unraveling the critical role of the export apparatus (EA) subcomplex in type III secretion. Unfolded substrates enter the EA through a hydrophilic constriction formed by SpaQ proteins, which enables side chain-independent substrate transport. Above, a methionine gasket formed by SpaP proteins functions as a gate that dilates to accommodate substrates while preventing leaky pore formation. Following gate penetration, a moveable SpaR loop first folds up to then support substrate transport. Together, these findings establish the molecular basis for substrate translocation through T3SSs and improve our understanding of bacterial pathogenicity and motility.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte de Proteínas/fisiología , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/metabolismo , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Conformación Proteica en Hélice alfa , Salmonella enterica/metabolismo , Salmonella typhimurium/genética , Sistemas de Secreción Tipo III/genética
6.
Biophys Rev ; 13(6): 913-923, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35035593

RESUMEN

Various nanoscopic channels of roughly equal diameter and length facilitate single-file diffusion at vastly different rates. The underlying variance of the energetic barriers to transport is poorly understood. First, water partitioning into channels so narrow that individual molecules cannot overtake each other incurs an energetic penalty. Corresponding estimates vary widely depending on how the sacrifice of two out of four hydrogen bonds is accounted for. Second, entropy differences between luminal and bulk water may arise: additional degrees of freedom caused by dangling OH-bonds increase entropy. At the same time, long-range dipolar water interactions decrease entropy. Here, we dissect different contributions to Gibbs free energy of activation, ΔG ‡, for single-file water transport through narrow channels by analyzing experimental results from water permeability measurements on both bare lipid bilayers and biological water channels that (i) consider unstirred layer effects and (ii) adequately count the channels in reconstitution experiments. First, the functional relationship between water permeabilities and Arrhenius activation energies indicates negligible differences between the entropies of intraluminal water and bulk water. Second, we calculate ΔG ‡ from unitary water channel permeabilities using transition state theory. Plotting ΔG ‡ as a function of the number of H-bond donating or accepting pore-lining residues results in a 0.1 kcal/mol contribution per residue. The resulting upper limit for partial water dehydration amounts to 2 kcal/mol. In the framework of biomimicry, our analysis provides valuable insights for the design of synthetic water channels. It thus may aid in the urgent endeavor towards combating global water scarcity.

7.
Curr Top Microbiol Immunol ; 427: 67-90, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31667599

RESUMEN

The type III secretion system (T3SS) is an essential virulence factor of many pathogenic bacterial species including Salmonella, Yersinia, Shigella and enteropathogenic Escherichia coli (EPEC). It is an intricate molecular machine that spans the bacterial membranes and injects effector proteins into target host cells, enabling bacterial infection. The T3SS needle complex comprises of proteinaceous rings supporting a needle filament which extends out into the extracellular environment. It serves as the central conduit for translocating effector proteins. Multiple laboratories have dedicated a remarkable effort to decipher the structure and function of the needle complex. A combination of structural biology techniques such as cryo-electron microscopy (cryoEM), X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and computer modelling have been utilized to study different structural components at progressively higher resolutions. This chapter will provide an overview of the structural details of the T3SS needle complex, shedding light on this essential component of this fascinating bacterial system.


Asunto(s)
Sistemas de Secreción Tipo III/química , Proteínas Bacterianas , Simulación por Computador , Microscopía por Crioelectrón , Cristalografía por Rayos X , Resonancia Magnética Nuclear Biomolecular , Sistemas de Secreción Tipo III/ultraestructura , Factores de Virulencia
8.
Proc Natl Acad Sci U S A ; 116(38): 19109-19115, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31462495

RESUMEN

Viral inhibitors, such as pleconaril and vapendavir, target conserved regions in the capsids of rhinoviruses (RVs) and enteroviruses (EVs) by binding to a hydrophobic pocket in viral capsid protein 1 (VP1). In resistant RVs and EVs, bulky residues in this pocket prevent their binding. However, recently developed pyrazolopyrimidines inhibit pleconaril-resistant RVs and EVs, and computational modeling has suggested that they also bind to the hydrophobic pocket in VP1. We studied the mechanism of inhibition of pleconaril-resistant RVs using RV-B5 (1 of the 7 naturally pleconaril-resistant rhinoviruses) and OBR-5-340, a bioavailable pyrazolopyrimidine with proven in vivo activity, and determined the 3D-structure of the protein-ligand complex to 3.6 Å with cryoelectron microscopy. Our data indicate that, similar to other capsid binders, OBR-5-340 induces thermostability and inhibits viral adsorption and uncoating. However, we found that OBR-5-340 attaches closer to the entrance of the pocket than most other capsid binders, whose viral complexes have been studied so far, showing only marginal overlaps of the attachment sites. Comparing the experimentally determined 3D structure with the control, RV-B5 incubated with solvent only and determined to 3.2 Å, revealed no gross conformational changes upon OBR-5-340 binding. The pocket of the naturally OBR-5-340-resistant RV-A89 likewise incubated with OBR-5-340 and solved to 2.9 Å was empty. Pyrazolopyrimidines have a rigid molecular scaffold and may thus be less affected by a loss of entropy upon binding. They interact with less-conserved regions than known capsid binders. Overall, pyrazolopyrimidines could be more suitable for the development of new, broadly active inhibitors.


Asunto(s)
Antivirales/metabolismo , Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Farmacorresistencia Viral , Oxadiazoles/farmacología , Rhinovirus/metabolismo , Proteínas Virales/química , Antivirales/farmacología , Sitios de Unión , Cápside/efectos de los fármacos , Cápside/ultraestructura , Células HeLa , Humanos , Modelos Moleculares , Estructura Molecular , Oxazoles , Infecciones por Picornaviridae/tratamiento farmacológico , Infecciones por Picornaviridae/metabolismo , Infecciones por Picornaviridae/virología , Unión Proteica , Conformación Proteica , Rhinovirus/efectos de los fármacos , Rhinovirus/ultraestructura , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Nucleic Acids Res ; 46(17): 9201-9219, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060171

RESUMEN

The dissemination of multi-resistant bacteria represents an enormous burden on modern healthcare. Plasmid-borne conjugative transfer is the most prevalent mechanism, requiring a type IV secretion system that enables bacteria to spread beneficial traits, such as resistance to last-line antibiotics, among different genera. Inc18 plasmids, like the Gram-positive broad host-range plasmid pIP501, are substantially involved in propagation of vancomycin resistance from Enterococci to methicillin-resistant strains of Staphylococcus aureus. Here, we identified the small cytosolic protein TraN as a repressor of the pIP501-encoded conjugative transfer system, since deletion of traN resulted in upregulation of transfer factors, leading to highly enhanced conjugative transfer. Furthermore, we report the complex structure of TraN with DNA and define the exact sequence of its binding motif. Targeting this protein-DNA interaction might represent a novel therapeutic approach against the spreading of antibiotic resistances.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Conjugación Genética , ADN Bacteriano/química , Enterococcus faecalis/genética , Proteínas de Escherichia coli/química , Plásmidos/química , Sistemas de Secreción Tipo IV/genética , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Enterococcus faecalis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Termodinámica , Sistemas de Secreción Tipo IV/metabolismo , Vancomicina/farmacología , Resistencia a la Vancomicina/genética
10.
Front Mol Biosci ; 3: 42, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27563645

RESUMEN

pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMß1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual function: It acts as transcriptional repressor at the repR promoter and, in addition, prevents convergent transcription of RNAIII and repR mRNA (RNAII), which indirectly increases RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII). Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS) encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including Streptomyces and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter overlapping with the origin of transfer (oriT). The T4SS operon encodes the DNA-binding proteins TraJ (VirD4-like coupling protein) and the VirB4-like ATPase, TraE. Both proteins are actively involved in conjugative DNA transport. Moreover, the operon encodes TraN, a small cytoplasmic protein, whose specific binding to a sequence upstream of the oriT nic-site was demonstrated. TraN seems to be an effective repressor of pIP501 transfer, as conjugative transfer rates were significantly increased in an E. faecalis pIP501ΔtraN mutant.

11.
Sci Rep ; 6: 24643, 2016 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-27103580

RESUMEN

Untreatable bacterial infections caused by a perpetual increase of antibiotic resistant strains represent a serious threat to human healthcare in the 21(st) century. Conjugative DNA transfer is the most important mechanism for antibiotic resistance and virulence gene dissemination among bacteria and is mediated by a protein complex, known as type IV secretion system (T4SS). The core of the T4SS is a multiprotein complex that spans the bacterial envelope as a channel for macromolecular secretion. We report the NMR structure and functional characterization of the transfer protein TraH encoded by the conjugative Gram-positive broad-host range plasmid pIP501. The structure exhibits a striking similarity to VirB8 proteins of Gram-negative secretion systems where they play an essential role in the scaffold of the secretion machinery. Considering TraM as the first VirB8-like protein discovered in pIP501, TraH represents the second protein affiliated with this family in the respective transfer operon. A markerless traH deletion in pIP501 resulted in a total loss of transfer in Enterococcus faecalis as compared with the pIP501 wild type (wt) plasmid, demonstrating that TraH is essential for pIP501 mediated conjugation. Moreover, oligomerization state and topology of TraH in the native membrane were determined providing insights in molecular organization of a Gram-positive T4SS.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transporte Biológico , Conjugación Genética , ADN/metabolismo , Enterococcus faecalis/metabolismo , Transferencia de Gen Horizontal , Proteínas Nucleares/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Enterococcus faecalis/genética , Eliminación de Gen , Humanos , Espectroscopía de Resonancia Magnética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Plásmidos , Conformación Proteica
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2376-89, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195751

RESUMEN

Conjugative transfer through type IV secretion multiprotein complexes is the most important means of spreading antimicrobial resistance. Plasmid pIP501, frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates, is the first Gram-positive (G+) conjugative plasmid for which self-transfer to Gram-negative (G-) bacteria has been demonstrated. The pIP501-encoded type IV secretion system (T4SS) protein TraN localizes to the cytoplasm and shows specific DNA binding. The specific DNA-binding site upstream of the pIP501 origin of transfer (oriT) was identified by a novel footprinting technique based on exonuclease digestion and sequencing, suggesting TraN to be an accessory protein of the pIP501 relaxase TraA. The structure of TraN was determined to 1.35 Šresolution. It revealed an internal dimer fold with antiparallel ß-sheets in the centre and a helix-turn-helix (HTH) motif at both ends. Surprisingly, structurally related proteins (excisionases from T4SSs of G+ conjugative transposons and transcriptional regulators of the MerR family) resembling only one half of TraN were found. Thus, TraN may be involved in the early steps of pIP501 transfer, possibly triggering pIP501 TraA relaxase activity by recruiting the relaxosome to the assembled mating pore.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Enterococcus faecalis/química , Enterococcus faecium/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Cartilla de ADN , Proteínas de Unión al ADN/metabolismo , Espectrometría de Masas , Conformación Proteica , Fracciones Subcelulares/metabolismo
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1124-35, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699656

RESUMEN

Conjugative plasmid transfer presents a serious threat to human health as the most important means of spreading antibiotic resistance and virulence genes among bacteria. The required direct cell-cell contact is established by a multi-protein complex, the conjugative type IV secretion system (T4SS). The conjugative core complex spans the cellular envelope and serves as a channel for macromolecular secretion. T4SSs of Gram-negative (G-) origin have been studied in great detail. In contrast, T4SSs of Gram-positive (G+) bacteria have only received little attention thus far, despite the medical relevance of numerous G+ pathogens (e.g. enterococci, staphylococci and streptococci). This study provides structural information on the type IV secretion (T4S) protein TraK of the G+ broad host range Enterococcus conjugative plasmid pIP501. The crystal structure of the N-terminally truncated construct TraKΔ was determined to 3.0 Šresolution and exhibits a novel fold. Immunolocalization demonstrated that the protein localizes to the cell wall facing towards the cell exterior, but does not exhibit surface accessibility. Circular dichroism, dynamic light scattering and size-exclusion chromatography confirmed the protein to be a monomer. With the exception of proteins from closely related T4SSs, no significant sequence or structural relatives were found. This observation marks the protein as a very exclusive, specialized member of the pIP501 T4SS.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Enterococcus faecalis/química , Plásmidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Modelos Moleculares , Plásmidos/química , Estructura Terciaria de Proteína
14.
Microbiol Spectr ; 2(4): PLAS-0004-2013, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26104193

RESUMEN

Conjugative transfer is the most important means of spreading antibiotic resistance and virulence factors among bacteria. The key vehicles of this horizontal gene transfer are a group of mobile genetic elements, termed conjugative plasmids. Conjugative plasmids contain as minimum instrumentation an origin of transfer (oriT), DNA-processing factors (a relaxase and accessory proteins), as well as proteins that constitute the trans-envelope transport channel, the so-called mating pair formation (Mpf) proteins. All these protein factors are encoded by one or more transfer (tra) operons that together form the DNA transport machinery, the Gram-positive type IV secretion system. However, multicellular Gram-positive bacteria belonging to the streptomycetes appear to have evolved another mechanism for conjugative plasmid spread reminiscent of the machinery involved in bacterial cell division and sporulation, which transports double-stranded DNA from donor to recipient cells. Here, we focus on the protein key players involved in the plasmid spread through the two different modes and present a new secondary structure homology-based classification system for type IV secretion protein families. Moreover, we discuss the relevance of conjugative plasmid transfer in the environment and summarize novel techniques to visualize and quantify conjugative transfer in situ.


Asunto(s)
Conjugación Genética , Bacterias Grampositivas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Transferencia de Gen Horizontal , Genes Bacterianos , Bacterias Grampositivas/fisiología , Sustancias Macromoleculares/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Operón , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo
15.
Plasmid ; 70(3): 289-302, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24129002

RESUMEN

Bacterial conjugation presents the most important means to spread antibiotic resistance and virulence factors among closely and distantly related bacteria. Conjugative plasmids are the mobile genetic elements mainly responsible for this task. All the genetic information required for the horizontal transmission is encoded on the conjugative plasmids themselves. Two distinct concepts for horizontal plasmid transfer in Gram-positive bacteria exist, the most prominent one transports single stranded plasmid DNA via a multi-protein complex, termed type IV secretion system, across the Gram-positive cell envelope. Type IV secretion systems have been found in virtually all unicellular Gram-positive bacteria, whereas multicellular Streptomycetes seem to have developed a specialized system more closely related to the machinery involved in bacterial cell division and sporulation, which transports double stranded DNA from donor to recipient cells. This review intends to summarize the state of the art of prototype systems belonging to the two distinct concepts; it focuses on protein key players identified so far and gives future directions for research in this emerging field of promiscuous interbacterial transport.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Clostridium/genética , Conjugación Genética , Enterococcus faecalis/genética , Regulación Bacteriana de la Expresión Génica , Streptomycetaceae/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Pared Celular/metabolismo , Clostridium/metabolismo , ADN/genética , ADN/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Enterococcus faecalis/metabolismo , Transferencia de Gen Horizontal , Operón , Plásmidos/metabolismo , Streptomycetaceae/metabolismo
16.
J Bacteriol ; 195(19): 4436-44, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23913323

RESUMEN

pIP501 is a conjugative broad-host-range plasmid frequently present in nosocomial Enterococcus faecalis and Enterococcus faecium isolates. We focus here on the functional analysis of the type IV secretion gene traG, which was found to be essential for pIP501 conjugative transfer between Gram-positive bacteria. The TraG protein, which localizes to the cell envelope of E. faecalis harboring pIP501, was expressed and purified without its N-terminal transmembrane helix (TraGΔTMH) and shown to possess peptidoglycan-degrading activity. TraGΔTMH was inhibited by specific lytic transglycosylase inhibitors hexa-N-acetylchitohexaose and bulgecin A. Analysis of the TraG sequence suggested the presence of two domains which both could contribute to the observed cell wall-degrading activity: an N-terminal soluble lytic transglycosylase domain (SLT) and a C-terminal cysteine-, histidine-dependent amidohydrolases/peptidases (CHAP) domain. The protein domains were expressed separately, and both degraded peptidoglycan. A change of the conserved glutamate residue in the putative catalytic center of the SLT domain (E87) to glycine resulted in almost complete inactivity, which is consistent with this part of TraG being a predicted lytic transglycosylase. Based on our findings, we propose that TraG locally opens the peptidoglycan to facilitate insertion of the Gram-positive bacterial type IV secretion machinery into the cell envelope.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecalis/enzimología , Enterococcus faecium/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Peptidoglicano/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacología , Proteínas Bacterianas/genética , Conjugación Genética , Enterococcus faecalis/genética , Enterococcus faecium/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Oligosacáridos/farmacología , Plásmidos , Prolina/análogos & derivados , Prolina/farmacología
17.
Artículo en Inglés | MEDLINE | ID: mdl-23385763

RESUMEN

The major means of horizontal gene spread (e.g. of antibiotic resistance) is conjugative plasmid transfer. It presents a serious threat especially for hospitalized and immuno-suppressed patients, as it can lead to the accelerated spread of bacteria with multiple antibiotic resistances. Detailed information about the process is available only for bacteria of Gram-negative (G-) origin and little is known about the corresponding mechanisms in Gram-positive (G+) bacteria. Here we present the purification, biophysical characterization, crystallization and preliminary structure determination of the TraM C-terminal domain (TraMΔ, comprising residues 190-322 of the full-length protein), a putative transfer protein from the G+ conjugative model plasmid pIP501. The crystals diffracted to 2.5 Å resolution and belonged to space group P1, with unit-cell parameters a = 39.21, b = 54.98, c = 93.47 Å, α = 89.91, ß = 86.44, γ = 78.63° and six molecules per asymmetric unit. The preliminary structure was solved by selenomethionine single-wavelength anomalous diffraction.


Asunto(s)
Proteínas Bacterianas/química , Conjugación Genética , Bacterias Grampositivas/metabolismo , Plásmidos/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Tampones (Química) , Cromatografía en Gel , Dicroismo Circular , Cristalización , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
J Biol Chem ; 288(3): 2018-28, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23188825

RESUMEN

Conjugative plasmid transfer is the most important means of spreading antibiotic resistance and virulence genes among bacteria and therefore presents a serious threat to human health. The process requires direct cell-cell contact made possible by a multiprotein complex that spans cellular membranes and serves as a channel for macromolecular secretion. Thus far, well studied conjugative type IV secretion systems (T4SS) are of Gram-negative (G-) origin. Although many medically relevant pathogens (e.g., enterococci, staphylococci, and streptococci) are Gram-positive (G+), their conjugation systems have received little attention. This study provides structural information for the transfer protein TraM of the G+ broad host range Enterococcus conjugative plasmid pIP501. Immunolocalization demonstrated that the protein localizes to the cell wall. We then used opsonophagocytosis as a novel tool to verify that TraM was exposed on the cell surface. In these assays, antibodies generated to TraM recruited macrophages and enabled killing of pIP501 harboring Enteroccocus faecalis cells. The crystal structure of the C-terminal, surface-exposed domain of TraM was determined to 2.5 Å resolution. The structure, molecular dynamics, and cross-linking studies indicated that a TraM trimer acts as the biological unit. Despite the absence of sequence-based similarity, TraM unexpectedly displayed a fold similar to the T4SS VirB8 proteins from Agrobacterium tumefaciens and Brucella suis (G-) and to the transfer protein TcpC from Clostridium perfringens plasmid pCW3 (G+). Based on the alignments of secondary structure elements of VirB8-like proteins from mobile genetic elements and chromosomally encoded T4SS from G+ and G- bacteria, we propose a new classification scheme of VirB8-like proteins.


Asunto(s)
Proteínas Bacterianas/química , Pared Celular/genética , Conjugación Genética , Enterococcus faecalis/genética , Plásmidos/genética , Factores de Virulencia/química , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Anticuerpos Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Brucella suis/genética , Brucella suis/metabolismo , Pared Celular/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Cristalografía por Rayos X , Enterococcus faecalis/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Modelos Moleculares , Fagocitosis/efectos de los fármacos , Multimerización de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Homología Estructural de Proteína , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
19.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 11): 1402-5, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23143259

RESUMEN

Conjugative plasmid transfer is the most important route for the spread of resistance and virulence genes among bacteria. Consequently, bacteria carrying conjugative plasmids are a substantial threat to human health, especially hospitalized patients. Whilst detailed information about the process has been obtained for Gram-negative type-4 secretion systems, little is known about the corresponding mechanisms in Gram-positive (G+) bacteria. The successful purification and crystallization of the putative transfer protein TraN from the G+ conjugative model plasmid pIP501 of Enterococcus faecalis are presented. Native crystals diffracted to 1.8 Šresolution on a synchrotron beamline. The crystals belonged to space group P2(1), with unit-cell parameters a=32.88, b=54.94, c=57.71 Å, ß=91.89° and two molecules per asymmetric unit.


Asunto(s)
Proteínas Bacterianas/química , Enterococcus faecalis/genética , Plásmidos/genética , Proteínas Bacterianas/aislamiento & purificación , Cromatografía de Afinidad , Cromatografía en Gel , Conjugación Genética , Cristalización , Cristalografía por Rayos X , Escherichia coli
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...