Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(20): 26870-26885, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739846

RESUMEN

Pathogen detection has become a major research area all over the world for water quality surveillance and microbial risk assessment. Therefore, designing simple and sensitive detection kits plays a key role in envisaging and evaluating the risk of disease outbreaks and providing quality healthcare settings. Herein, we have designed a facile and low-cost colorimetric sensing strategy for the selective and sensitive determination of ß-galactosidase producing pathogens. The hexagonal boron nitride quantum dots (h-BN QDs) were established as a nanozyme that showed prominent peroxidase-like activity, which catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2. The h-BN QDs were embedded on a layer-by-layer assembled agarose biopolymer. The ß-galactosidase enzyme partially degrades ß-1,4 glycosidic bonds of agarose polymer, resulting in accessibility of h-BN QDs on the solid surface. This assay can be conveniently conducted and analyzed by monitoring the blue color formation due to TMB oxidation within 30 min. The nanocomposite was stable for more than 90 days and was showing TMB oxidation after incubating it with Escherichia coli (E. coli). The limit of detection was calculated to be 1.8 × 106 and 1.5 × 106 CFU/mL for E. coli and Klebsiella pneumonia (K. pneumonia), respectively. Furthermore, this novel sensing approach is an attractive platform that was successfully applied to detect E. coli in spiked water samples and other food products with good accuracy, indicating its practical applicability for the detection of pathogens in real samples.


Asunto(s)
Bencidinas , Compuestos de Boro , Colorimetría , Escherichia coli , Puntos Cuánticos , beta-Galactosidasa , Puntos Cuánticos/química , Colorimetría/métodos , beta-Galactosidasa/metabolismo , beta-Galactosidasa/química , Escherichia coli/aislamiento & purificación , Escherichia coli/enzimología , Compuestos de Boro/química , Bencidinas/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Peroxidasa/química , Peroxidasa/metabolismo , Límite de Detección , Oxidación-Reducción , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/aislamiento & purificación
2.
Environ Sci Pollut Res Int ; 30(50): 109198-109213, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37768488

RESUMEN

Conversion of biomass such as lignocelluloses to an alternative energy source can contribute to sustainable development. Recently, biomass-degrading enzymes are reported to be common resources in insect-microbe interacting systems. Northeast India harbors ample sericigenous insect resources which are exploited for their silk products. Samia ricini Donovan is an economically important poly-phytophagous silkmoth capable of digesting foliage from different plant species, suggesting the versatility of a robust gut system. Here, a gut bacterial profile was determined by 16S rRNA gene characterization across the holometabolous life cycle during the summer and winter seasons, revealing 3 phyla, 13 families, and 22 genera. Comparative analysis among the seasonal gut isolates revealed a high diversity in summer, predominated by the genus Bacillus due to its high occurrence in all developmental stages. Shannon's diversity index demonstrated the second and fourth instars of summer as well as the fifth instar of winter to be relatively better developmental stages for gut bacteria assembly. Bacterial community shifts in concert to host developmental changes were found to be apparent between early instars and late instars in summer, which differed from those of winter. Forty-three and twenty-nine gut bacterial isolates were found to be cellulolytic and xylanolytic enzyme producers, respectively. The present results illustrate the gut microbiota of S. ricini over the seasons and support the holometabolous life cycle effect as the most likely factor shaping the gut bacterial microbiota. These findings may provide leads for the development of new cleaner and environmentally friendly lignocellulose-degrading enzymes.


Asunto(s)
Bombyx , Humanos , Animales , Estaciones del Año , ARN Ribosómico 16S/metabolismo , Seda/metabolismo , Bacterias/genética
3.
Front Plant Sci ; 13: 1037109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518501

RESUMEN

Root-associated bacteria strongly affect plant growth and development by synthesizing growth regulators and stress-relieving metabolites. The present study is mainly focused on assessing aerial root-associated bacteria of Rhynchostylis retusa (L.) Blume is an endemic epiphytic orchid responsible for auxin production and influencing plant growth. A bacterial isolate, Microbacterium testaceum Y411, was found to be the most active producer of indole-3-acetic acid (IAA). The maximum IAA production (170µg/mL) was recorded with the bacterium at optimum process parameters such as pH 7, temperature 30°C, and tryptophan 1000 µg/mL in a culture medium for 48 h. The extracted auxin was purified and analyzed by FT-IR, HPLC, and HR-MS, indicating bacterial auxin has a similar mass value to 4-chloroindole-3-acetic acid auxin. Furthermore, the bacterial auxin was tested on in vitro propagation of orchid, Cymbidium aloifolium, and 90% seed germination was recorded in Murashige and Skoog's medium supplemented with bacterial auxin. The novel results obtained in this study are used for agricultural applications and the Microbacterium testaceum Y411 is a valuable biotechnological resource for a natural auxin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...