Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IMA Fungus ; 14(1): 2, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627722

RESUMEN

Pink snow mold, caused by a phytopathogenic and psychrotolerant fungus, Microdochium nivale, is a severe disease of winter cereals and grasses that predominantly occurs under snow cover or shortly after its melt. Snow mold has significantly progressed during the past decade, often reaching epiphytotic levels in northern countries and resulting in dramatic yield losses. In addition, M. nivale gradually adapts to a warmer climate, spreading to less snowy territories and causing different types of plant diseases throughout the growing period. Despite its great economic importance, M. nivale is poorly investigated; its genome has not been sequenced and its crucial virulence determinants have not been identified or even predicted. In our study, we applied a hybrid assembly based on Oxford Nanopore and Illumina reads to obtain the first genome sequence of M. nivale. 11,973 genes (including 11,789 protein-encoding genes) have been revealed in the genome assembly. To better understand the genetic potential of M. nivale and to obtain a convenient reference for transcriptomic studies on this species, the identified genes were annotated and split into hierarchical three-level functional categories. A file with functionally classified M. nivale genes is presented in our study for general use. M. nivale gene products that best meet the criteria for virulence factors have been identified. The genetic potential to synthesize human-dangerous mycotoxins (fumonisin, ochratoxin B, aflatoxin, and gliotoxin) has been revealed for M. nivale. The transcriptome analysis combined with the assays for extracellular enzymatic activities (conventional virulence factors of many phytopathogens) was carried out to assess the effect of host plant (rye) metabolites on the M. nivale phenotype. In addition to disclosing plant-metabolite-upregulated M. nivale functional gene groups (including those related to host plant protein destruction and amino acid metabolism, xenobiotic detoxication (including phytoalexins benzoxazinoids), cellulose destruction (cellulose monooxygenases), iron transport, etc.), the performed analysis pointed to a crucial role of host plant lipid destruction and fungal lipid metabolism modulation in plant-M. nivale interactions.

2.
Plants (Basel) ; 11(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36235382

RESUMEN

Winter rye is a versatile crop widely used for food and industry. Although rye is resistant to abiotic stressors and many phytopathogens, it is severely damaged by pink snow mold (SM)-a progressive disease caused by the psychrotolerant fungus Microdochium nivale under the snow cover or during prolonged periods of wet and cool conditions. Due to little use of the SM resistance sources in contemporary breeding, varieties with at least moderate resistance to SM are limited. Our study aimed to integrate field assessment under natural conditions and an artificially enriched infection background with laboratory techniques for testing rye accessions and selecting SM resistant sources for applied breeding programs and genetic research. We revealed valuable sources of SM resistance and split rye accessions, according to the level of the genetic divergence of the SM resistance phenotype. This allowed us to select the most distinct donors of the SM resistance, for their use as parental forms, to include novel variability sources in the breeding program for achieving high genetic variability, as well as enhanced and durable SM resistance, in progeny. The rye accessions analyzed here, and the suggested options for their use in breeding, are valuable tools for rye breeding.

3.
Biochimie ; 201: 157-167, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35691533

RESUMEN

Methionine γ-lyase (MGL) is a pyridoxal 5'-phosphate-dependent enzyme catalyzing γ-elimination in l-methionine. Pyridoxal 5'-phosphate-dependent enzymes have unique spectral properties that allow to monitor sequential formation and decomposition of various intermediates via the detection of absorbance changes. The kinetic mechanism of the γ-elimination reaction catalyzed by Citrobacter freundii MGL was elucidated here by fast stopped-flow kinetic analysis. Single-wavelength detection of characteristic absorbance changes enabled us to compare transformations of intermediates in the course of the reaction with different substrates. The influence of various γ-substituents in the substrate on the formation of key intermediates was estimated. Kinetic isotope effects of α- and ß-protons were determined using deuterium-substituted l-methionine. Contributions of amino acid residues Tyr113 and Tyr58 located in the active site on the formation and decomposition of reaction intermediates were identified too. α-Aminocrotonate formation is the rate-limiting step of the enzymatic γ-elimination reaction. Kinetic isotope effects strongly support concerted reaction mechanisms of transformation between an external aldimine and a ketimine intermediate as well as a ketimine intermediate and an unsaturated ketimine.


Asunto(s)
Citrobacter freundii , Protones , Aminoácidos , Liasas de Carbono-Azufre/metabolismo , Catálisis , Deuterio , Iminas , Cinética , Metionina/metabolismo , Nitrilos , Fosfatos , Fosfato de Piridoxal/metabolismo
4.
Plants (Basel) ; 10(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34961191

RESUMEN

Microdochium nivale is a progressive and devastating phytopathogen that causes different types of cereal crop and grass diseases that are poorly characterized at the molecular level. Although rye (Secale cereale L.) is one of the most resistant crops to most of the phytopathogens, it is severely damaged by M. nivale. The recent high-quality chromosome-scale assembly of rye genome has improved whole-genome studies of this crop. In the present work, the first transcriptome study of the M. nivale-infected crop plant (rye) with the detailed functional gene classification was carried out, along with the physiological verification of the RNA-Seq data. The results revealed plant reactions that contributed to their resistance or susceptibility to M. nivale. Phytohormone abscisic acid was shown to promote plant tolerance to M. nivale. Flavonoids were proposed to contribute to plant resistance to this pathogen. The upregulation of plant lipase encoding genes and the induction of lipase activity in M. nivale-infected plants revealed in our study were presumed to play an important role in plant susceptibility to the studied phytopathogen. Our work disclosed important aspects of plant-M. nivale interactions, outlined the directions for future studies on poorly characterized plant diseases caused by this phytopathogen, and provided new opportunities to improve cereals breeding and food security strategies.

5.
Plants (Basel) ; 10(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34371610

RESUMEN

Our study is the first to consider the changes in the entire set of matrix plant cell wall (PCW) polysaccharides in the course of a plant infectious disease. We compared the molecular weight distribution, monosaccharide content, and the epitope distribution of pectic compounds and cross-linking glycans in non-infected potato plants and plants infected with Pectobacterium atrosepticum at the initial and advanced stages of plant colonization by the pathogen. To predict the gene products involved in the modification of the PCW polysaccharide skeleton during the infection, the expression profiles of potato and P. atrosepticum PCW-related genes were analyzed by RNA-Seq along with phylogenetic analysis. The assemblage of P. atrosepticum biofilm-like structures-the bacterial emboli-and the accumulation of specific fragments of pectic compounds that prime the formation of these structures were demonstrated within potato plants (a natural host of P. atrosepticum). Collenchyma was shown to be the most "vulnerable" tissue to P. atrosepticum among the potato stem tissues. The infection caused by the representative of the Soft Rot Pectobacteriaceae was shown to affect not only pectic compounds but also cross-linking glycans; the content of the latter was increased in the infected plants compared to the non-infected ones.

6.
J Fungi (Basel) ; 6(4)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287447

RESUMEN

Snow mold is a severe plant disease caused by psychrophilic or psychrotolerant fungi, of which Microdochium species are the most harmful. A clear understanding of Microdochium biology has many gaps; the pathocomplex and its dynamic are poorly characterized, virulence factors are unknown, genome sequences are not available, and the criteria of plant snow mold resistance are not elucidated. Our study aimed to identify comprehensive characteristics of a local community of snow mold-causing Microdochium species colonizing a particular crop culture. By using the next-generation sequencing (NGS) technique, we characterized fungal and bacterial communities of pink snow mold-affected winter rye (Secale cereale) plants within a given geographical location shortly after snowmelt. Twenty-one strains of M. nivale were isolated, classified on the basis of internal transcribed spacer 2 (ITS2) region, and characterized by morphology, synthesis of extracellular enzymes, and virulence. Several types of extracellular enzymatic activities, the level of which had no correlations with the degree of virulence, were revealed for Microdochium species for the first time. Our study shows that genetically and phenotypically diverse M. nivale strains simultaneously colonize winter rye plants within a common area, and each strain is likely to utilize its own, unique strategy to cause the disease using "a personal" pattern of extracellular enzymes.

7.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167439

RESUMEN

A series of novel 4-aminobenzofuroxan derivatives containing aromatic/aliphatic amines fragments was achieved via aromatic nucleophilic substitution reaction of 4,6-dichloro-5-nitrobenzofuroxan. The quantum chemistry calculations were performed to identify the factors affecting the regioselectivity of the reaction. The formation of 4-substituted isomer is favored both by its greater stability and the lower activation barrier. Antimicrobial activity of the obtained compounds has been evaluated and some of them were found to suppress effectively bacterial biofilm growth. Fungistatic activity of 4-aminobenzofuroxans were tested on two genetically distinct isolates of M. nivale. The effect of some benzofuroxan derivatives is likely to be more universal against different varieties of M. nivale compared with benzimidazole and carbendazim. Additionally, their anti-cancer activity in vitro has been tested. 4-aminofuroxans possessing aniline moiety showed a high selectivity towards MCF-7 and M-HeLa tumor cell lines. Moreover, they exhibit a significantly lower toxicity towards normal liver cells compared to Doxorubicin and Tamoxifen. Thus, benzofuroxans containing aromatic amines fragments in their structure are promising candidates for further development both as anti-cancer and anti-microbial agents.


Asunto(s)
Antiinfecciosos/síntesis química , Antineoplásicos/síntesis química , Benzoxazoles/síntesis química , Descubrimiento de Drogas , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Benzoxazoles/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales , Drogas en Investigación/síntesis química , Drogas en Investigación/química , Células HeLa , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
8.
Biochim Biophys Acta ; 1844(10): 1860-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25084024

RESUMEN

The interaction of the mutant tryptophan indole-lyase (TIL) from Proteus vulgaris Y72F with the transition state analogue, oxindolyl-l-alanine (OIA), with the natural substrate, l-tryptophan, and with a substrate S-ethyl-l-cysteine was examined. In the case of wild-type enzyme these reactions are described by the same kinetic scheme where binding of holoenzyme with an amino acid, leading to reversible formation of an external aldimine, proceeds very fast, while following transformations, leading finally to reversible formation of a quinonoid intermediate proceed with measureable rates. Principally the same scheme ("induced fit") is realized in the case of mutant Y72F enzyme reaction with OIA. For the reaction of mutant enzyme with l-Trp at lower concentrations of the latter a principally different kinetic scheme is observed. This scheme suggests that binding of the substrate and formation of the quinonoid intermediate are at fast equilibrium, while preceding conformational changes of the holoenzyme proceed with measureable rates ("selected fit"). For the reaction with S-ethyl-l-cysteine the observed concentration dependence of kobs agrees with the realization of both kinetic schemes, the "selected fit" becoming predominant at lower concentrations of substrate, the "induced fit"- at higher ones. In the reaction with S-ethyl-l-cysteine the formation of the quinonoid intermediate proceeds slower than does catalytic α,ß-elimination of ethylthiol from S-ethyl-l-cysteine, and consequently does not play a considerable role in the catalysis, which may be effected by a concerted E2 mechanism.

9.
Amino Acids ; 41(5): 1247-56, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21104284

RESUMEN

A comparative study of the kinetics and stereospecificity of isotopic exchange of the pro-2R- and pro-2S protons of glycine in (2)H(2)O under the action of tyrosine phenol-lyase (TPL), tryptophan indole-lyase (TIL) and methionine γ-lyase (MGL) was undertaken. The kinetics of exchange was monitored using both (1)H- and (13)C-NMR. In the three compared lyases the stereospecificities of the main reactions with natural substrates dictate orthogonal orientation of the pro-2R proton of glycine with respect to the cofactor pyridoxal 5'-phosphate (PLP) plane. Consequently, according to Dunathan's postulate with all the three enzymes pro-2R proton should exchange faster than does the pro-2S one. In fact the found ratios of 2R:2S reactivities are 1:20 for TPL, 108:1 for TIL, and 1,440:1 for MGL. Thus, TPL displays an unprecedented inversion of stereospecificity. A probable mechanism of the observed phenomenon is suggested, which is based on the X-ray data for the quinonoid intermediate, formed in the reaction of TPL with L-alanine. The mechanism implies different conformational changes in the active site upon binding of glycine and alanine. These changes can lead to relative stabilization of either the neutral amino group, accepting the α-proton, or the respective ammonium group, which is formed after the proton abstraction.


Asunto(s)
Proteínas Bacterianas/química , Citrobacter freundii/enzimología , Glicina/química , Proteus vulgaris/enzimología , Fosfato de Piridoxal/química , Triptofanasa/química , Tirosina Fenol-Liasa/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Isótopos de Carbono/química , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Citrobacter freundii/química , Glicina/análogos & derivados , Glicina/metabolismo , Cinética , Proteus vulgaris/química , Protones , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Estereoisomerismo , Triptofanasa/genética , Triptofanasa/metabolismo , Tirosina Fenol-Liasa/genética , Tirosina Fenol-Liasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA