Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pol J Vet Sci ; 27(1): 151-159, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38511729

RESUMEN

Raw meat-based diets for pet nutrition are becoming increasingly popular. The percentage of meat content, composition of nutrients, and amount of additives started to play an important role in the recipe of a given food. However, the use of healthier and unprocessed food must also be balanced with the animal's specific needs based on its anatomy, physiology, and behavior. There are many potential advantages and disadvantages of a biologically appropriate raw food (BARF) diet, and all of them should be considered before switching to this approach. Raw meat is considered a diet closest to nature and least processed. However, raw diets threaten pet health because of the potential for nutrient imbalances. The choice of raw meat in pets' everyday diet should be supported by the veterinarian's medical decision and preferably also with nutritionist help. Growing animals require a specific Ca:P ratio in their diet, which may be improper in raw meat. For cats, taurine levels must be carefully checked. In addition, an imbalanced raw-meat diet can be the cause of poor semen quality in males. Females are prone to inhibition of the estrus cycle, especially due to hyperthyroidism. Exogenous thyroid hormone intake is a real concern when feeding a neck/head meat with thyroid glands. There is also a possibility of bacterial or parasitic presence in raw meat. The present paper aims to summarize the current state of knowledge about the benefits and threats of eating a raw meat diet for the health concerns of companion animals.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Masculino , Femenino , Animales , Gatos , Perros , Enfermedades de los Gatos/prevención & control , Análisis de Semen/veterinaria , Alimentación Animal/análisis , Dieta/veterinaria , Carne/análisis
2.
Animal ; 15(7): 100272, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34126387

RESUMEN

Coronaviruses (CoVs), which are enveloped, positive-sense RNA viruses, may cause infections in mammals and birds. Apart from the respiratory manifestations, CoVs are also responsible for infections of the gastrointestinal tract and nervous systems. Their propensity to recombine allows them to easily transmit and adapt to new hosts. The emergence of a new CoV in humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is attributed to a zoonotic origin, has provoked numerous studies to assess its pathogenicity for different animal species (pets, farm and wild animals). Available results indicate that numerous animal species are susceptible to infection with SARS-CoV-2. From April 2020, when the first SARS-CoV-2 infection in minks was reported in the Netherlands, to the end of January 2021, further outbreaks have been confirmed in Denmark, Italy, Spain, Sweden, the United States, Greece, France, Canada, Lithuania and Poland. It has also been established that human-to-minks and minks-to-human transmission may occur. The results obtained to date indicate that the virus was originally introduced into the minks population by humans, possibly at the start of the pandemic and had been circulating in the population for several weeks before detection. Recent data indicate that minks are highly susceptible to SARS-CoV-2 infection, but the route or routes of virus transmission between farms, other than by direct contact with infected humans, have not been identified. In minks, infection can occur in clinical and subclinical form, making it possibly difficult to detect. Therefore, minks could represent potentially dangerous, not always recognized, animal reservoir for SARS-CoV-2. The current data indicate that further studies on minks and other Mustelidae are needed to clarify whether they may be a potential reservoir for SARS-CoV-2, and if so, how and whether this can be prevented.


Asunto(s)
COVID-19 , Visón , Animales , COVID-19/veterinaria , Canadá , Granjas , Francia , Grecia , Humanos , Italia , Países Bajos , Polonia , SARS-CoV-2 , España , Suecia
3.
Anim Genet ; 47(2): 245-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26692319

RESUMEN

Obesity is an emerging health problem in purebred dogs. Due to their crucial role in energy homeostasis control, genes encoding adipokines are considered candidate genes, and their variants may be associated with predisposition to obesity. Searching for polymorphism was carried out in three adipokine genes (TNF, RETN and IL6). The study was performed on 260 dogs, including lean (n = 109), overweight (n = 88) and obese (n = 63) dogs. The largest cohort was represented by Labrador Retrievers (n = 136). Altogether, 24 novel polymorphisms were identified: 12 in TNF (including one missense SNP), eight in RETN (including one missense SNP) and four in IL6. Distributions of five common SNPs (two in TNF, two in RETN and one in IL6) were further analyzed with regard to body condition score. Two SNPs in the non-coding parts of TNF (c.-40A>C and c.233+14G>A) were associated with obesity in Labrador dogs. The obtained results showed that the studied adipokine genes are highly polymorphic and two polymorphisms in the TNF gene may be considered as markers predisposing Labrador dogs to obesity.


Asunto(s)
Adipoquinas/genética , Perros/genética , Obesidad/genética , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Genotipo , Haplotipos , Interleucina-6/genética , Resistina/genética , Análisis de Secuencia de ADN , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...