Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2310006, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456831

RESUMEN

In recent years, there has been widespread adoption of machine learning (ML) technologies to unravel intricate relationships among diverse parameters in various additive manufacturing (AM) techniques. These ML models excel at recognizing complex patterns from extensive, well-curated datasets, thereby unveiling latent knowledge crucial for informed decision-making during the AM process. The collaborative synergy between ML and AM holds the potential to revolutionize the design and production of AM-printed parts. This review delves into the challenges and opportunities emerging at the intersection of these two dynamic fields. It provides a comprehensive analysis of the publication landscape for ML-related research in the field of AM, explores common ML applications in AM research (such as quality control, process optimization, design optimization, microstructure analysis, and material formulation), and concludes by presenting an outlook that underscores the utilization of advanced ML models, the development of emerging sensors, and ML applications in emerging AM-related fields. Notably, ML has garnered increased attention in AM due to its superior performance across various AM-related applications. It is envisioned that the integration of ML into AM processes will significantly enhance 3D printing capabilities across diverse AM-related research areas.

2.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139605

RESUMEN

In badminton, accurate service height detection is critical for ensuring fairness. We developed an automated service fault detection system that employed computer vision and machine learning, specifically utilizing the YOLOv5 object detection model. Comprising two cameras and a workstation, our system identifies elements, such as shuttlecocks, rackets, players, and players' shoes. We developed an algorithm that can pinpoint the shuttlecock hitting event to capture its height information. To assess the accuracy of the new system, we benchmarked the results against a high sample-rate motion capture system and conducted a comparative analysis with eight human judges that used a fixed height service tool in a backhand low service situation. Our findings revealed a substantial enhancement in accuracy compared with human judgement; the system outperformed human judges by 3.5 times, achieving a 58% accuracy rate for detecting service heights between 1.150 and 1.155 m, as opposed to a 16% accuracy rate for humans. The system we have developed offers a highly reliable solution, substantially enhancing the consistency and accuracy of service judgement calls in badminton matches and ensuring fairness in the sport. The system's development signifies a meaningful step towards leveraging technology for precision and integrity in sports officiation.

3.
3D Print Addit Manuf ; 10(3): 428-437, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37346189

RESUMEN

Fused filament fabrication (FFF) has been widely used in various industries, and the adoption of technology is growing significantly. However, the FFF process has several disadvantages like inconsistent part quality and print repeatability. The occurrence of manufacturing-induced defects often leads to these shortcomings. This study aims to develop and implement an on-site monitoring system, which consists of a camera attached to the print head and the laptop that processes the video feed, for the extrusion-based 3D printers incorporating computer vision and object detection models to detect defects and make corrections in real-time. Image data from two classes of defects were collected to train the model. Various YOLO architectures were evaluated to study the ability to detect and classify printing anomalies such as under-extrusion and over-extrusion. Four of the trained models, YOLOv3 and YOLOv4 with "Tiny" variation, achieved a mean average precision score of >80% using the AP50 metric. Subsequently, two of the models (YOLOv3-Tiny 100 and 300 epochs) were optimized using Open Neural Network Exchange (ONNX) model conversion and ONNX Runtime to improve the inference speed. A classification accuracy rate of 89.8% and an inference speed of 70 frames per second were obtained. Before implementing the on-site monitoring system, a correction algorithm was developed to perform simple corrective actions based on defect classification. The G-codes of the corrective actions were sent to the printers during the printing process. This implementation successfully demonstrated real-time monitoring and autonomous correction during the FFF 3D printing process. This implementation will pave the way for an on-site monitoring and correction system through closed-loop feedback from other additive manufacturing (AM) processes.

4.
Sensors (Basel) ; 23(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36904916

RESUMEN

The first years of an infant's life represent a sensitive period for neurodevelopment where one can see the emergence of nascent forms of executive function (EF), which are required to support complex cognition. Few tests exist for measuring EF during infancy, and the available tests require painstaking manual coding of infant behaviour. In modern clinical and research practice, human coders collect data on EF performance by manually labelling video recordings of infant behaviour during toy or social interaction. Besides being extremely time-consuming, video annotation is known to be rater-dependent and subjective. To address these issues, starting from existing cognitive flexibility research protocols, we developed a set of instrumented toys to serve as a new type of task instrumentation and data collection tool suitable for infant use. A commercially available device comprising a barometer and an inertial measurement unit (IMU) embedded in a 3D-printed lattice structure was used to detect when and how the infant interacts with the toy. The data collected using the instrumented toys provided a rich dataset that described the sequence of toy interaction and individual toy interaction patterns, from which EF-relevant aspects of infant cognition can be inferred. Such a tool could provide an objective, reliable, and scalable method of collecting early developmental data in socially interactive contexts.


Asunto(s)
Cognición , Juego e Implementos de Juego , Humanos , Lactante , Recolección de Datos
5.
Tissue Eng Part A ; 29(1-2): 20-46, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36047505

RESUMEN

Bioelectronics presents a promising future in the field of embedded and implantable electronics, providing a range of functional applications, from personal health monitoring to bioactuators. However, due to the intrinsic difficulties present in producing and optimizing bioelectronics, recent research has focused on utilizing machine learning (ML) to reliably mitigate such issues and aid in process development. This review focuses on the recent developments of integrating ML into bioelectronics, aiding in a multitude of areas, such as material development, fabrication process optimization, and system integration. First, discussing how ML has aided in the material development by identifying complex relationships between process input parameters and desired outputs, such as product design. Second, examine the advancements in ML to accurately optimize fabrication precision and stability for various 3D printing technologies. Third, provide an overview of how ML can greatly assist in the analysis of complex, nonlinear relationships in data obtained from bioelectronics. Lastly, a summary of the challenges present with utilizing ML with bioelectronics and any other developments in this field. Such advancements in the field of bioelectronics and ML could hopefully build a strong foundation for this research field, promoting smart optimization together with effective use of ML to further enhance the effectiveness of such applications. Impact statement The article serves to give insight about the use of the machine learning (ML) techniques in the field of bioelectronics, since bioelectronics and ML are two distinct fields. This article allows bioelectronics researcher to get to know the latest advancement in the ML field. On the other hand, the article provides an insight to the ML researchers about how ML techniques can be useful in bioelectronics applications.


Asunto(s)
Dispositivos Electrónicos Vestibles , Electrónica/métodos , Prótesis e Implantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...