Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(8): e18639, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560655

RESUMEN

In the present study bioactive methanolic extract along with chloroform and hexane extracts obtained from shade dried leaves of the Himalayan aromatic medicinal plant Nepeta leucophylla Benth. Were screened for the presence of triterpenoids, especially oleanolic acid (OA). Total three compounds oleanolic acid, squalene and linoleic methyl ester were isolated from methanol extract. The percentage yield of OA was 0.11%. Out of these three, OA is more bioactive and was further subjected to derivatization using greener Ultrasonication method. Total three derivatives (3-Acetyl oleanolic acid, 3-Phthaloyl oleanolic acid and 3-Oxo oleanolic acid) were synthesized with 91.16%, 93.98%, and 83.6% respectively. Further, the antioxidant potential of OA and its derivatives were evaluated using DPPH assay which suggested that the 3-Phthaloyl oleanolic acid exhibits highest antioxidant potential with 40.83 ± 1.14% inhibition. OA and its derivatives were screened in-silico antibacterial potential against three bacterial pathogens (E-coli, M. tuberculosis and S. aureus) and antiviral potential against Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), Human immunodeficiency virus (HIV) and H1N1 influenza virus. The in-silico results suggested that 3-phthaloyl oleanolic acid showed best H-bonding with FtsA (Staphylococcus aureus), enoyl acyl reductase (E. coli) and arabinosyl transferase (Mycobactrium tuberculosis). 3-Phthaloyl oleanolic acid also showed best H-Bond interactions with the target proteins hemagglutinin (H1N1) and reverse transcriptase (HIV), whereas, oleanolic acid exhibited the best interactions with RNA dependent RNA polymerase (SARS-CoV-2) and thus could be considered for further in vitro studies.

2.
Plants (Basel) ; 11(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35567130

RESUMEN

The influence of medicinal plants on humanity spans time immemorial. These plants are also used at present with local and tribal peoples for the cures of various illnesses. Nature has produced an immense number of medicinal plants, which directly or indirectly help to treat various ailments and have numerous applications in the fields of pharmaceuticals, agriculture, food flavors and preservatives, aromas, and cosmetics. Bergenia pacumbis (Buch.-Ham. ex D.Don) C.Y.Wu & J.T.Pan (synonym: Bergenia ligulate Engl.), is an important medicinal plant belonging to the Saxifragaceae family, and not to be confused with Bergenia ciliata (Haw.) Sternb., and is popularly known as Pashanbheda (meaning to dissolve the kidney stone). This plant is a rich source of secondary metabolites (SMs) such as coumarins, flavonoids, benzenoids, lactones, tannins, phenols, and sterols, which make this plant a highly valued medicinal herb with a broad spectrum of pharmacological activities such as anti-urolithic, antioxidant, anti-viral, free radical scavenging, antidiabetic, anti-hepatotoxic, diuretic, antipyretic, anti-oxaluria, anti-tumour, antibacterial, antifungal, anti-inflammatory, antimicrobial, and cardioprotective. This review summarizes traditional uses and offers up to date data for future research on B. pacumbis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...