Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Top Med Chem ; 24(11): 973-985, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38561616

RESUMEN

Respiratory viruses have caused many pandemics from past to present and are among the top global public health problems due to their rate of spread. The recently experienced COVID-19 pandemic has led to an understanding of the importance of rapid diagnostic tests to prevent epidemics and the difficulties of developing new vaccines. On the other hand, the emergence of resistance to existing antiviral drugs during the treatment process poses a major problem for society and global health systems. Therefore, there is a need for new approaches for the diagnosis, prophylaxis, and treatment of existing or new types of respiratory viruses. Immunoglobulin Y antibodies (IgYs) obtained from the yolk of poultry eggs have significant advantages, such as high production volumes, low production costs, and high selectivity, which enable the development of innovative and strategic products. Especially in diagnosing respiratory viruses, antibody-based biosensors in which these antibodies are integrated have the potential to provide superiority in making rapid and accurate diagnosis as a practical diagnostic tool. This review article aims to provide information on using IgY antibodies in diagnostic, prophylactic, and therapeutic applications for respiratory viruses and to provide a perspective for future innovative applications.


Asunto(s)
Técnicas Biosensibles , Inmunoglobulinas , Humanos , Inmunoglobulinas/inmunología , Inmunoglobulinas/uso terapéutico , Antivirales/uso terapéutico , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/inmunología , COVID-19/diagnóstico , COVID-19/inmunología , Sistemas de Liberación de Medicamentos , Animales , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología
2.
PeerJ ; 11: e15523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37309371

RESUMEN

Onopordum acanthium is a medicinal plant with many important properties, such as antibacterial, anticancer, and anti-hypotensive properties. Although various studies reported the biological activities of O. acanthium, there is no study on its nano-phyto-drug formulation. The aim of this study is to develop a candidate nano-drug based on phytotherapeutic constituents and evaluate its efficiency in vitro and in silico. In this context, poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of O. acanthium extract (OAE) were synthesized and characterized. It was determined that the average particle size of OAE-PLGA-NPs was 214.9 ± 6.77 nm, and the zeta potential was -8.03 ± 0.85 mV, and PdI value was 0.064 ± 0.013. The encapsulation efficiency of OAE-PLGA-NPs was calculated as 91%, and the loading capacity as 75.83%. The in vitro drug release study showed that OAE was released from the PLGA NPs with 99.39% over the 6 days. Furthermore, the mutagenic and cytotoxic activity of free OAE and OAE-PLGA-NPs were evaluated by the Ames test and MTT test, respectively. Although 0.75 and 0.37 mg/mL free OAE concentrations caused both frameshift mutation and base pair substitution (p < 0.05), the administered OAE-PLGA NP concentrations were not mutagenic. It was determined with the MTT analysis that the doses of 0.75 and 1.5 mg/mL of free OAE had a cytotoxic effect on the L929 fibroblast cell line (p < 0.05), and OAE-PLGA-NPs had no cytotoxic effect. Moreover, the interaction between the OAE and S. aureus was also investigated using the molecular docking analysis method. The molecular docking and molecular dynamics (MD) results were implemented to elucidate the S. aureus MurE inhibition potential of OAE. It was shown that quercetin in the OAE content interacted significantly with the substantial residues in the catalytic pocket of the S. aureus MurE enzyme, and quercetin performed four hydrogen bond interactions corresponding to a low binding energy of -6.77 kcal/mol with catalytic pocket binding residues, which are crucial for the inhibition mechanism of S. aureus MurE. Finally, the bacterial inhibition values of free OAE and OAE-PLGA NPs were determined against S. aureus using a microdilution method. The antibacterial results showed that the inhibition value of the OAE-PLGA NPs was 69%. In conclusion, from the in vitro and in silico results of the nano-sized OAE-PLGA NP formulation produced in this study, it was evaluated that the formulation may be recommended as a safe and effective nano-phyto-drug candidate against S. aureus.


Asunto(s)
Onopordum , Infecciones Estafilocócicas , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Quercetina , Antibacterianos
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122964, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37302199

RESUMEN

A new BODIPY complex (C4) composed of meso- thienyl-pyridine substituted core unit diiodinated from 2- and 6- positions and distyryl moieties at 3- and 5- positions is synthesized. Nano-sized formulation of C4 is prepared by single emulsion method using poly(ε-caprolactone)(PCL) polymer. Encapsulation efficiency and loading capacity values of C4 loaded PCL nanoparticles (C4@PCL-NPs) are calculated and in vitro release profile of C4 is determined. The cytotoxicity and anti-cancer activity are conducted on the L929 and MCF-7 cell lines. Cellular uptake study is performed and interaction between C4@PCL-NPs and MCF-7 cell line is investigated. Anti-cancer activity of C4 is predicted with molecular docking studies and the inhibition property on EGFR, ERα, PR and mTOR are investigated for its anticancer properties. Molecular interactions, binding positions and docking score energies between C4 and EGFR, ERα, PR and mTOR targets are revealed using in silico methods. The druglikeness and pharmacokinetic properties of C4 are evaluated using the SwissADME and its bioavailability and toxicity profiles are assessed using the SwissADME, preADMET and pkCSM servers. In conclusion, the potential use of C4 as an anti-cancer agent is evaluated in vitro and in silico methods. Also, photophysicochemical properties are studied to investigate the potential of using Photodynamic Therapy (PDT). In photochemical studies, the calculated singlet oxygen quantum yield (ΦΔ) value was 0.73 for C4 and in photopysical studies, the calculated fluorescence quantum yield ΦF value was 0.19 for C4.


Asunto(s)
Receptor alfa de Estrógeno , Nanopartículas , Humanos , Simulación del Acoplamiento Molecular , Poliésteres/química , Receptores ErbB , Nanopartículas/química , Portadores de Fármacos/química
4.
J Biomol Struct Dyn ; : 1-15, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349941

RESUMEN

The increase in the aging population worldwide has led scientists to turn to research to prevent the aging process. In this context, synthetic peptides emerge as candidate molecules for developing new anti-aging products. This study aims to investigate the possible interactions of Syn-Ake, a synthetic peptide, with matrix metalloproteinases (MMPs) and Sirtuin 1 (SIRT1), which are the targets of anti-aging activities with in silico approaches, and to determine the antioxidant activity, and safety profile of the peptide by in vitro methods such as cytotoxicity (MTT) and genotoxicity (Ames) tests. The molecular docking study showed that the docking score energy of MMP receptors was in the order of MMP-13 < MMP-8 < MMP-1. Syn-Ake peptide provided the lowest and the most stable binding to the SIRT1 receptor at -9.32 kcal/mol. Binding interaction and protein-ligand stability of Syn-Ake with MMPs and SIRT1 in a dynamic system were predicted by 50 ns molecular dynamic (MD) simulation studies. The MD results showed that the Syn-Ake peptide remained stable in the active site of MMP-13 and SIRT1 receptors during 50 ns simulations. In addition, the antioxidant activity of Syn-Ake was investigated using diphenyl-2-picril-hydrazine (DPPH) method since it is crucial to remove free radicals that are effective in skin aging. The results revealed the concentration-dependent increased DPPH radical scavenging activity of the peptide. Finally, the safety of the Syn-Ake was investigated, and the safe dose of the peptide was determined. In conclusion, in silico and in vitro analyses show that the Syn-Ake peptide may hold promise in anti-aging formulations with its high efficacy and safety profile.Communicated by Ramaswamy H. Sarma.

5.
Molecules ; 27(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35335262

RESUMEN

The aim of this study was to obtain essential oil (LNEO) from the Laurus nobilis L. plant, and to prepare LNEO-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) as an approach in cancer treatment. The components of the obtained LNEO were analyzed using GC-MS. The LNEO-NPs were synthesized by the single-emulsion method. The LNEO-NPs were characterized using UV-Vis spectrometry, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and a DNA binding assay, which was performed via the UV-Vis titration method. According to the results, the LNEO-NPs had a 211.4 ± 4.031 nm average particle size, 0.068 ± 0.016 PdI, and -7.87 ± 1.15 mV zeta potential. The encapsulation efficiency and loading capacity were calculated as 59.25% and 25.65%, respectively, and the in vitro drug release study showed an LNEO release of 93.97 ± 3.78% over the 72 h period. Moreover, the LNEO was intercalatively bound to CT-DNA. In addition, the mechanism of action of LNEO on a dual PI3K/mTOR inhibitor was predicted, and its antiproliferative activity and mechanism were determined using molecular docking analysis. It was concluded that LNEO-loaded PLGA NPs may be used for cancer treatment as a novel phytotherapeutic agent-based controlled-release system.


Asunto(s)
Laurus , Neoplasias , Aceites Volátiles , Glicoles , Ácido Láctico/química , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Aceites Volátiles/farmacología , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
6.
J Biomol Struct Dyn ; 40(22): 12148-12164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34463215

RESUMEN

The main objective of the present study is to investigate the molecular structure and DNA binding interaction of the tyrosyl-lysyl-threonine (YKT) tripeptide, which has anticancer, antioxidant and analgesic properties, using various in silico (MD, QM, molecular docking), spectroscopic (UV, FT-IR, FTIR-ATR, Raman, gel electrophoresis) and in vitro (MCF-7 and HeLa cancer cell lines and BEAS-2B cell line) methods. The optimized geometry, vibrational wavenumbers, molecular electrostatic potential (MEP), natural bond orbital (NBO) and HOMO-LUMO (highest occupied molecular orbital- lowest unoccupied molecular orbital) calculations were carried out with Density Functional Theory (DFT) using B3LYP/6-311++G(d,p) basis set to indicate conformational, vibrational and intramolecular charge transfer characteristics. The assignment of all fundamental theoretical vibration wavenumbers was performed using potential energy distribution analysis (PED). DNA is a significant pharmacological target of drugs in several diseases such as cancer. For this reason, molecular docking calculation was used to elucidate the binding and interaction between YKT tripeptide and DNA at the atomic level. Also, the dynamic behaviors of YKT and DNA was examined using MD simulations. Besides, the interaction of YKT with DNA was experimentally examined by UV titration method and agarose gel electrophoresis method. Experimental results showed that YKT was intercalatively and electrostatically bound to CT-DNA (Calf thymus DNA) and cleavage pBR322 DNA in the presence of H2O2. The pharmacokinetic profile of YKT was also obtained. Cytotoxic effect of YKT was evaluated on MCF-7, HeLa and BEAS-2B cell lines. Hence, these studies about YKT tripeptide may pave the way for the development of various cancer drugs. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Peróxido de Hidrógeno , Espectrometría Raman , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , ADN , Vibración , Electricidad Estática , Teoría Cuántica , Espectrofotometría Ultravioleta
7.
Int J Biol Macromol ; 161: 947-957, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32544580

RESUMEN

Epilobium is a medicinal plant; its extracts are widely used traditional medicine due to their broad range of pharmacological and therapeutic properties. Its most prominent feature is its therapeutic effects on prostatic diseases. The aim of this study is preparation of controlled release system of Epilobium parviflorum, and determination of its potential of anticancer applications. For this purpose, Epilobium parviflorum extract (EPE) loaded chitosan nanoparticles were prepared with ionic gelation method to increase the bioavailability of the extract. The nanoparticles were investigated in terms of size, zeta potential, polydispersity index, encapsulation efficiency, loading capacity and release profile. Besides, scanning electron microscopy (SEM) was used to observe the morphology of the nanoparticles. Moreover, Ames/Salmonella test was used to determine the mutagenicity of EPE, and it was shown that it had no mutagenic effect. It was found that EPE loaded chitosan nanoparticles were with 64.47 nm in average size, 0.168 PdI and 15.2 mV zeta potential. Encapsulation efficiency and loading capacity were found as 92.46% and 8%, respectively. Finally, DNA binding assay and in silico molecular docking studies were performed between EPE and DNA in order to contribute to design of plant based controlled release system for use in cancer therapy.


Asunto(s)
Quitosano/química , Epilobium/química , Nanopartículas/química , Disponibilidad Biológica , Portadores de Fármacos/química , Simulación del Acoplamiento Molecular/métodos , Tamaño de la Partícula , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA