Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589567

RESUMEN

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Asunto(s)
Hidrazinas , Neoplasias Renales , Triazoles , Tumor de Wilms , Humanos , Proteína Exportina 1 , Transporte Activo de Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Línea Celular Tumoral , Apoptosis , Recurrencia Local de Neoplasia , Doxorrubicina/farmacología , Tumor de Wilms/tratamiento farmacológico , Tumor de Wilms/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Cancer Discov ; 14(5): 752-765, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227896

RESUMEN

A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA. Cancer cell TREX1 expression is coordinately induced with STING by autocrine IFN and downstream STAT1, preventing signal amplification. TREX1 inactivation in cancer cells thus unleashes STING-IFN signaling, recruiting T and natural killer (NK) cells, sensitizing to NK cell-derived IFNγ, and cooperating with programmed cell death protein 1 blockade in multiple mouse tumor models to enhance immunogenicity. Targeting TREX1 may represent a complementary strategy to induce cytosolic DNA and amplify cancer cell STING-IFN signaling as a means to sensitize tumors to immune checkpoint blockade (ICB) and/or cell therapies. SIGNIFICANCE: STING-IFN signaling in cancer cells promotes tumor cell immunogenicity. Inactivation of the DNA exonuclease TREX1, which is adaptively upregulated to limit pathway activation in cancer cells, recruits immune effector cells and primes NK cell-mediated killing. Targeting TREX1 has substantial therapeutic potential to amplify cancer cell immunogenicity and overcome ICB resistance. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Exodesoxirribonucleasas , Proteínas de la Membrana , Fosfoproteínas , Transducción de Señal , Exodesoxirribonucleasas/genética , Ratones , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Humanos , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Interferones/metabolismo , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo
3.
J Thorac Oncol ; 19(5): 732-748, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38154514

RESUMEN

INTRODUCTION: ERBB2 amplification in lung cancer remains poorly characterized. HER2 (encoded by ERBB2) is a transmembrane tyrosine kinase capable of ligand-independent dimerization and signaling when overexpressed, and a common cause of HER2 overexpression is ERBB2 amplification. Here, we evaluated the clinicopathologic and genomic characteristics of ERBB2-amplified NSCLC and explored a HER2 antibody-drug conjugate (ADC) therapeutic strategy. METHODS: Our institutional next-generation DNA sequencing data (OncoPanel) from 5769 NSCLC samples (5075 patients) were queried for cases having high-level ERBB2 amplification (≥6 copies). Clinical and demographic characteristics were extracted from the electronic medical records. Efficacy of the pan-ERBB inhibitor afatinib or HER2 ADCs (trastuzumab deruxtecan and trastuzumab emtansine) was evaluated in NSCLC preclinical models and patients with ERBB2 amplification. RESULTS: High-level ERBB2 amplification was identified in 0.9% of lung adenocarcinomas and reliably predicted overexpression of HER2. ERBB2 amplification events are detected in two distinct clinicopathologic and genomic subsets of NSCLC: as the sole mitogenic driver in tumors arising in patients with a smoking history or as a concomitant alteration with other mitogenic drivers in patients with a light or never smoking history. We further reveal that trastuzumab deruxtecan is effective therapy in in vitro and in vivo preclinical models of NSCLC harboring ERBB2 amplification and report two cases of clinical activity of an anti-HER2 ADC in patients who acquired ERBB2 amplification after previous targeted therapy. CONCLUSIONS: High-level ERBB2 amplification reliably predicts HER2 overexpression in patients with NSCLC, and HER2 ADC is effective therapy in this population.


Asunto(s)
Camptotecina/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas , Amplificación de Genes , Neoplasias Pulmonares , Receptor ErbB-2 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Masculino , Persona de Mediana Edad , Animales , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Anciano , Ratones , Trastuzumab/uso terapéutico , Trastuzumab/farmacología , Prevalencia , Afatinib/uso terapéutico , Afatinib/farmacología , Ado-Trastuzumab Emtansina/uso terapéutico , Ado-Trastuzumab Emtansina/farmacología
4.
bioRxiv ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37961132

RESUMEN

Merkel Cell Carcinoma (MCC) is a highly aggressive neuroendocrine cutaneous malignancy arising from either ultraviolet-induced mutagenesis or Merkel cell polyomavirus (MCPyV) integration. It is the only known neuroendocrine tumor (NET) with a virus etiology. Despite extensive research, our understanding of the molecular mechanisms driving the transition from normal cells to MCC remains limited. To address this knowledge gap, we assessed the impact of inducible MCPyV T antigens into normal human fibroblasts by performing RNA sequencing. Our findings suggested that the WNT signaling pathway plays a critical role in the development of MCC. To test this model, we bioinformatically evaluated various perturbagens for their ability to reverse the MCC gene expression signature and identified pyrvinium pamoate, an FDA-approved anthelminthic drug known for its anti-tumor potential in multiple cancers. Leveraging transcriptomic, network, and molecular analyses, we found that pyrvinium effectively targets multiple MCC vulnerabilities. Specifically, pyrvinium not only reverses the neuroendocrine features of MCC by modulating canonical and non-canonical WNT signaling pathways but also inhibits cancer cell growth by activating the p53-mediated apoptosis pathway, disrupting mitochondrial function, and inducing endoplasmic reticulum (ER) stress. Pyrvinium also effectively inhibits tumor growth in an MCC mouse xenograft model. These findings offer new avenues for the development of therapeutic strategies for neuroendocrine cancer and highlight the utility of pyrvinium as a potential treatment for MCC.

5.
Cell Rep Med ; 4(11): 101282, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992688

RESUMEN

Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Antígeno B7-H1/genética , Aurora Quinasa A/genética , Aurora Quinasa A/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Mitosis , Interferones/genética
6.
Cancer Res ; 83(23): 3846-3860, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37819236

RESUMEN

NUT carcinoma (NC) is an aggressive squamous carcinoma defined by the BRD4-NUT fusion oncoprotein. Routinely effective systemic treatments are unavailable for most NC patients. The lack of an adequate animal model precludes identifying and leveraging cell-extrinsic factors therapeutically in NC. Here, we created a genetically engineered mouse model (GEMM) of NC that forms a Brd4::NUTM1 fusion gene upon tamoxifen induction of Sox2-driven Cre. The model displayed complete disease penetrance, with tumors arising from the squamous epithelium weeks after induction and all mice succumbing to the disease shortly thereafter. Closely resembling human NC (hNC), GEMM tumors (mNC) were poorly differentiated squamous carcinomas with high expression of MYC that metastasized to solid organs and regional lymph nodes. Two GEMM-derived cell lines were developed whose transcriptomic and epigenetic landscapes harbored key features of primary GEMM tumors. Importantly, GEMM tumor and cell line transcriptomes co-classified with those of human NC. BRD4-NUT also blocked differentiation and maintained the growth of mNC as in hNC. Mechanistically, GEMM primary tumors and cell lines formed large histone H3K27ac-enriched domains, termed megadomains, that were invariably associated with the expression of key NC-defining proto-oncogenes, Myc and Trp63. Small-molecule BET bromodomain inhibition (BETi) of mNC induced differentiation and growth arrest and prolonged survival of NC GEMMs, as it does in hNC models. Overall, tumor formation in the NC GEMM is definitive evidence that BRD4-NUT alone can potently drive the malignant transformation of squamous progenitor cells into NC. SIGNIFICANCE: The development of an immunocompetent model of NUT carcinoma that closely mimics the human disease provides a valuable global resource for mechanistic and preclinical studies to improve treatment of this incurable disease.


Asunto(s)
Carcinoma de Células Escamosas , Factores de Transcripción , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/patología , Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Cancer Res ; 83(23): 3956-3973, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747726

RESUMEN

NUT carcinoma is an aggressive carcinoma driven by the BRD4-NUT fusion oncoprotein, which activates chromatin to promote expression of progrowth genes. BET bromodomain inhibitors (BETi) are a promising treatment for NUT carcinoma that can impede BRD4-NUT's ability to activate genes, but the efficacy of BETi as monotherapy is limited. Here, we demonstrated that enhancer of zeste homolog 2 (EZH2), which silences genes through establishment of repressive chromatin, is a dependency in NUT carcinoma. Inhibition of EZH2 with the clinical compound tazemetostat potently blocked growth of NUT carcinoma cells. Epigenetic and transcriptomic analysis revealed that tazemetostat reversed the EZH2-specific H3K27me3 silencing mark and restored expression of multiple tumor suppressor genes while having no effect on key oncogenic BRD4-NUT-regulated genes. Indeed, H3K27me3 and H3K27ac domains were found to be mutually exclusive in NUT carcinoma cells. CDKN2A was identified as the only gene among all tazemetostat-derepressed genes to confer resistance to tazemetostat in a CRISPR-Cas9 screen. Combined inhibition of EZH2 and BET synergized to downregulate cell proliferation genes, resulting in more pronounced growth arrest and differentiation than either inhibitor alone. In preclinical models, combined tazemetostat and BETi synergistically blocked tumor growth and prolonged survival of NUT carcinoma-xenografted mice, with complete remission without relapse in one cohort. Identification of EZH2 as a dependency in NUT carcinoma substantiates the reliance of NUT carcinoma tumor cells on epigenetic dysregulation of functionally opposite, yet highly complementary, chromatin regulatory pathways to maintain NUT carcinoma growth. SIGNIFICANCE: Repression of tumor suppressor genes, including CDKN2A, by EZH2 provides a mechanistic rationale for combining EZH2 and BET inhibitors for the clinical treatment of NUT carcinoma. See related commentary by Kazansky and Kentsis, p. 3827.


Asunto(s)
Carcinoma , Proteínas Nucleares , Animales , Humanos , Ratones , Carcinoma/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Genes Supresores de Tumor , Histonas/metabolismo , Recurrencia Local de Neoplasia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Clin Cancer Res ; 29(24): 5128-5139, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37773632

RESUMEN

PURPOSE: Leiomyosarcoma (LMS) is an aggressive sarcoma for which standard chemotherapies achieve response rates under 30%. There are no effective targeted therapies against LMS. Most LMS are characterized by chromosomal instability (CIN), resulting in part from TP53 and RB1 co-inactivation and DNA damage repair defects. We sought to identify therapeutic targets that could exacerbate intrinsic CIN and DNA damage in LMS, inducing lethal genotoxicity. EXPERIMENTAL DESIGN: We performed clinical targeted sequencing in 287 LMS and genome-wide loss-of-function screens in 3 patient-derived LMS cell lines, to identify LMS-specific dependencies. We validated candidate targets by biochemical and cell-response assays in vitro and in seven mouse models. RESULTS: Clinical targeted sequencing revealed a high burden of somatic copy-number alterations (median fraction of the genome altered =0.62) and demonstrated homologous recombination deficiency signatures in 35% of LMS. Genome-wide short hairpin RNA screens demonstrated PRKDC (DNA-PKcs) and RPA2 essentiality, consistent with compensatory nonhomologous end joining (NHEJ) hyper-dependence. DNA-PK inhibitor combinations with unconventionally low-dose doxorubicin had synergistic activity in LMS in vitro models. Combination therapy with peposertib and low-dose doxorubicin (standard or liposomal formulations) inhibited growth of 5 of 7 LMS mouse models without toxicity. CONCLUSIONS: Combinations of DNA-PK inhibitors with unconventionally low, sensitizing, doxorubicin dosing showed synergistic effects in LMS in vitro and in vivo models, without discernable toxicity. These findings underscore the relevance of DNA damage repair alterations in LMS pathogenesis and identify dependence on NHEJ as a clinically actionable vulnerability in LMS.


Asunto(s)
Leiomiosarcoma , Animales , Ratones , Humanos , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Reparación del ADN/genética , Daño del ADN , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , ADN
9.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645799

RESUMEN

NUT carcinoma (NC) is an aggressive carcinoma driven by the BRD4-NUT fusion oncoprotein, which activates chromatin to promote expression of pro-growth genes. BET bromodomain inhibitors (BETi) impede BRD4-NUT's ability to activate genes and are thus a promising treatment but limited as monotherapy. The role of gene repression in NC is unknown. Here, we demonstrate that EZH2, which silences genes through establishment of repressive chromatin, is a dependency in NC. Inhibition of EZH2 with the clinical compound tazemetostat (taz) potently blocked growth of NC cells. Epigenetic and transcriptomic analysis revealed that taz reversed the EZH2-specific H3K27me3 silencing mark, and restored expression of multiple tumor suppressor genes while having no effect on key oncogenic BRD4- NUT-regulated genes. CDKN2A was identified as the only gene amongst all taz-derepressed genes to confer resistance to taz in a CRISPR-Cas9 screen. Combined EZH2 inhibition and BET inhibition synergized to downregulate cell proliferation genes resulting in more pronounced growth arrest and differentiation than either inhibitor alone. In pre-clinical models, combined taz and BETi synergistically blocked growth and prolonged survival of NC-xenografted mice, with all mice cured in one cohort. STATEMENT OF SIGNIFICANCE: Identification of EZH2 as a dependency in NC substantiates the reliance of NC tumor cells on epigenetic dysregulation of functionally opposite, yet highly complementary chromatin regulatory pathways to maintain NC growth. In particular, repression of CDKN2A expression by EZH2 provides a mechanistic rationale for combining EZH2i with BETi for the clinical treatment of NC.

10.
J Clin Invest ; 133(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37384411

RESUMEN

Despite the success of KRAS G12C inhibitors in non-small cell lung cancer (NSCLC), more effective treatments are needed. One preclinical strategy has been to cotarget RAS and mTOR pathways; however, toxicity due to broad mTOR inhibition has limited its utility. Therefore, we sought to develop a more refined means of targeting cap-dependent translation and identifying the most therapeutically important eukaryotic initiation factor 4F complex-translated (eIF4F-translated) targets. Here, we show that an eIF4A inhibitor, which targets a component of eIF4F, dramatically enhances the effects of KRAS G12C inhibitors in NSCLCs and together these agents induce potent tumor regression in vivo. By screening a broad panel of eIF4F targets, we show that this cooperativity is driven by effects on BCL-2 family proteins. Moreover, because multiple BCL-2 family members are concomitantly suppressed, these agents are broadly efficacious in NSCLCs, irrespective of their dependency on MCL1, BCL-xL, or BCL-2, which is known to be heterogeneous. Finally, we show that MYC overexpression confers sensitivity to this combination because it creates a dependency on eIF4A for BCL-2 family protein expression. Together, these studies identify a promising therapeutic strategy for KRAS-mutant NSCLCs, demonstrate that BCL-2 proteins are the key mediators of the therapeutic response in this tumor type, and uncover a predictive biomarker of sensitivity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Mutación
11.
Front Immunol ; 14: 1297932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38213329

RESUMEN

Background: The GL261 and CT2A syngeneic tumor lines are frequently used as immunocompetent orthotopic mouse models of human glioblastoma (huGBM) but demonstrate distinct differences in their responses to immunotherapy. Methods: To decipher the cell-intrinsic mechanisms that drive immunotherapy resistance in CT2A-luc and to define the aspects of human cancer biology that these lines can best model, we systematically compared their characteristics using whole exome and transcriptome sequencing, and protein analysis through immunohistochemistry, Western blot, flow cytometry, immunopeptidomics, and phosphopeptidomics. Results: The transcriptional profiles of GL261-luc2 and CT2A-luc tumors resembled those of some huGBMs, despite neither line sharing the essential genetic or histologic features of huGBM. Both models exhibited striking hypermutation, with clonal hotspot mutations in RAS genes (Kras p.G12C in GL261-luc2 and Nras p.Q61L in CT2A-luc). CT2A-luc distinctly displayed mesenchymal differentiation, upregulated angiogenesis, and multiple defects in antigen presentation machinery (e.g. Tap1 p.Y488C and Psmb8 p.A275P mutations) and interferon response pathways (e.g. copy number losses of loci including IFN genes and reduced phosphorylation of JAK/STAT pathway members). The defect in MHC class I expression could be overcome in CT2A-luc by interferon-γ treatment, which may underlie the modest efficacy of some immunotherapy combinations. Additionally, CT2A-luc demonstrated substantial baseline secretion of the CCL-2, CCL-5, and CCL-22 chemokines, which play important roles as myeloid chemoattractants. Conclusion: Although the clinical contexts that can be modeled by GL261 and CT2A for huGBM are limited, CT2A may be an informative model of immunotherapy resistance due to its deficits in antigen presentation machinery and interferon response pathways.


Asunto(s)
Presentación de Antígeno , Glioblastoma , Humanos , Animales , Ratones , Quinasas Janus , Transducción de Señal , Factores de Transcripción STAT , Interferón gamma , Inmunoterapia
12.
Elife ; 112022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36300789

RESUMEN

The transcription factor TEAD, together with its coactivator YAP/TAZ, is a key transcriptional modulator of the Hippo pathway. Activation of TEAD transcription by YAP has been implicated in a number of malignancies, and this complex represents a promising target for drug discovery. However, both YAP and its extensive binding interfaces to TEAD have been difficult to address using small molecules, mainly due to a lack of druggable pockets. TEAD is post-translationally modified by palmitoylation that targets a conserved cysteine at a central pocket, which provides an opportunity to develop cysteine-directed covalent small molecules for TEAD inhibition. Here, we employed covalent fragment screening approach followed by structure-based design to develop an irreversible TEAD inhibitor MYF-03-69. Using a range of in vitro and cell-based assays we demonstrated that through a covalent binding with TEAD palmitate pocket, MYF-03-69 disrupts YAP-TEAD association, suppresses TEAD transcriptional activity and inhibits cell growth of Hippo signaling defective malignant pleural mesothelioma (MPM). Further, a cell viability screening with a panel of 903 cancer cell lines indicated a high correlation between TEAD-YAP dependency and the sensitivity to MYF-03-69. Transcription profiling identified the upregulation of proapoptotic BMF gene in cancer cells that are sensitive to TEAD inhibition. Further optimization of MYF-03-69 led to an in vivo compatible compound MYF-03-176, which shows strong antitumor efficacy in MPM mouse xenograft model via oral administration. Taken together, we disclosed a story of the development of covalent TEAD inhibitors and its high therapeutic potential for clinic treatment for the cancers that are driven by TEAD-YAP alteration.


Asunto(s)
Cisteína , Vía de Señalización Hippo , Humanos , Animales , Ratones , Proyectos de Investigación , Activación Transcripcional , Trasplante Heterólogo
13.
Cancer Res ; 82(21): 4079-4092, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36066413

RESUMEN

Immunotherapy has shown limited efficacy in patients with EGFR-mutated lung cancer. Efforts to enhance the immunogenicity of EGFR-mutated lung cancer have been unsuccessful to date. Here, we discover that MET amplification, the most common mechanism of resistance to third-generation EGFR tyrosine kinase inhibitors (TKI), activates tumor cell STING, an emerging determinant of cancer immunogenicity (1). However, STING activation was restrained by ectonucleosidase CD73, which is induced in MET-amplified, EGFR-TKI-resistant cells. Systematic genomic analyses and cell line studies confirmed upregulation of CD73 in MET-amplified and MET-activated lung cancer contexts, which depends on coinduction of FOSL1. Pemetrexed (PEM), which is commonly used following EGFR-TKI treatment failure, was identified as an effective potentiator of STING-dependent TBK1-IRF3-STAT1 signaling in MET-amplified, EGFR-TKI-resistant cells. However, PEM treatment also induced adenosine production, which inhibited T-cell responsiveness. In an allogenic humanized mouse model, CD73 deletion enhanced immunogenicity of MET-amplified, EGFR-TKI-resistant cells, and PEM treatment promoted robust responses regardless of CD73 status. Using a physiologic antigen recognition model, inactivation of CD73 significantly increased antigen-specific CD8+ T-cell immunogenicity following PEM treatment. These data reveal that combined PEM and CD73 inhibition can co-opt tumor cell STING induction in TKI-resistant EGFR-mutated lung cancers and promote immunogenicity. SIGNIFICANCE: MET amplification upregulates CD73 to suppress tumor cell STING induction and T-cell responsiveness in TKI-resistant, EGFR-mutated lung cancer, identifying a strategy to enhance immunogenicity and improve treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Amplificación de Genes , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/metabolismo , 5'-Nucleotidasa/metabolismo
14.
Cancer Cell ; 40(10): 1128-1144.e8, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150391

RESUMEN

KRAS-LKB1 (KL) mutant lung cancers silence STING owing to intrinsic mitochondrial dysfunction, resulting in T cell exclusion and resistance to programmed cell death (ligand) 1 (PD-[L]1) blockade. Here we discover that KL cells also minimize intracellular accumulation of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) to further avoid downstream STING and STAT1 activation. An unbiased screen to co-opt this vulnerability reveals that transient MPS1 inhibition (MPS1i) potently re-engages this pathway in KL cells via micronuclei generation. This effect is markedly amplified by epigenetic de-repression of STING and only requires pulse MPS1i treatment, creating a therapeutic window compared with non-dividing cells. A single course of decitabine treatment followed by pulse MPS1i therapy restores T cell infiltration in vivo, enhances anti-PD-1 efficacy, and results in a durable response without evidence of significant toxicity.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Decitabina , Genes ras , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
15.
JCI Insight ; 7(13)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801592

RESUMEN

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin with 2 etiologies. Merkel cell polyomavirus (MCPyV) integration is present in about 80% of all MCC. Virus-positive MCC (MCCP) tumors have few somatic mutations and usually express WT p53 (TP53). By contrast, virus-negative MCC (MCCN) tumors present with a high tumor mutational burden and predominantly UV mutational signature. MCCN tumors typically contain mutated TP53. MCCP tumors express 2 viral proteins: MCPyV small T antigen and a truncated form of large T antigen. MCPyV ST specifically activates expression of MDM2, an E3 ubiquitin ligase of p53, to inhibit p53-mediated tumor suppression. In this study, we assessed the efficacy of milademetan, a potent, selective, and orally available MDM2 inhibitor in several MCC models. Milademetan reduced cell viability of WT p53 MCC cell lines and triggered a rapid and sustained p53 response. Milademetan showed a dose-dependent inhibition of tumor growth in MKL-1 xenograft and patient-derived xenograft models. Here, along with preclinical data for the efficacy of milademetan in WT p53 MCC tumors, we report several in vitro and in vivo models useful for future MCC studies.


Asunto(s)
Carcinoma de Células de Merkel , Infecciones por Polyomavirus , Proteínas Proto-Oncogénicas c-mdm2 , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Animales , Antígenos Virales de Tumores/metabolismo , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Humanos , Indoles/farmacología , Poliomavirus de Células de Merkel , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/genética , Piridinas/farmacología , Pirrolidinas/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Proteína p53 Supresora de Tumor/genética
16.
Bioorg Med Chem Lett ; 68: 128718, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35378251

RESUMEN

The C797S mutation confers resistance to covalent EGFR inhibitors used in the treatment of lung tumors with the activating L858R mutation. Isoindolinones such as JBJ-4-125-02 bind in an allosteric pocket and are active against this mutation, with high selectivity over wild-type EGFR. The most potent examples we developed from that series have a potential chemical instability risk from the combination of the amide and phenol groups. We explored a scaffold hopping approach to identify new series of allosteric EGFR inhibitors that retained good potency in the absence of the phenol group. The 5-F quinazolinone 34 demonstrated tumor regression in an H1975 efficacy model upon once daily oral dosing at 25 mg/kg.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Mutación , Fenoles , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinonas/farmacología , Quinazolinonas/uso terapéutico
17.
Nat Cancer ; 3(4): 402-417, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35422503

RESUMEN

Epidermal growth factor receptor (EGFR) therapy using small-molecule tyrosine kinase inhibitors (TKIs) is initially efficacious in patients with EGFR-mutant lung cancer, although drug resistance eventually develops. Allosteric EGFR inhibitors, which bind to a different EGFR site than existing ATP-competitive EGFR TKIs, have been developed as a strategy to overcome therapy-resistant EGFR mutations. Here we identify and characterize JBJ-09-063, a mutant-selective allosteric EGFR inhibitor that is effective across EGFR TKI-sensitive and resistant models, including those with EGFR T790M and C797S mutations. We further uncover that EGFR homo- or heterodimerization with other ERBB family members, as well as the EGFR L747S mutation, confers resistance to JBJ-09-063, but not to ATP-competitive EGFR TKIs. Overall, our studies highlight the potential clinical utility of JBJ-09-063 as a single agent or in combination with EGFR TKIs to define more effective strategies to treat EGFR-mutant lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenosina Trifosfato/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/farmacología
18.
J Invest Dermatol ; 142(10): 2783-2792.e15, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35331717

RESUMEN

Polycomb repressive complex 2 has a critical role in the maintenance of bivalent promoters and is often perturbed in cancer, including neuroendocrine tumors. In this study, we investigated the susceptibility of Merkel cell carcinoma (MCC), a neuroendocrine carcinoma of the skin, to inhibitors of the Polycomb repressive complex 2 catalytic subunit EZH2. We show that a subset of MCC cell lines is sensitive to EZH2 inhibitor-induced cell viability loss. We find that inhibitor treatment of susceptible cells derepresses the Polycomb repressive complex 2 target SIX1, a transcription factor in the PAX-SIX-EYA-DACH network normally involved in inner ear hair cell development, and that PAX-SIX-EYA-DACH network transcription factors are critical contributors to EZH2 inhibitor-induced MCC cell viability loss. Furthermore, we show the EZH2 inhibitor tazemetostat slows the growth of MCC xenografts and derepresses SIX1 and its downstream inner ear transcriptional target MYO6 in vivo. We propose that EZH2 inhibition in MCC leads to SIX1 derepression with dysregulation of hearing-related transcriptional programs and growth inhibition. This study provides evidence that MCC tumors may be specifically susceptible to EZH2 inhibitors, while giving mechanistic insight into the transcriptional programs these inhibitors perturb in MCC, and potentially in other neuroendocrine cancers.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Ciclohexilaminas , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Complejo Represivo Polycomb 2/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
19.
Nature ; 603(7900): 335-342, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236983

RESUMEN

RAS family members are the most frequently mutated oncogenes in human cancers. Although KRAS(G12C)-specific inhibitors show clinical activity in patients with cancer1-3, there are no direct inhibitors of NRAS, HRAS or non-G12C KRAS variants. Here we uncover the requirement of the silent KRASG60G mutation for cells to produce a functional KRAS(Q61K). In the absence of this G60G mutation in KRASQ61K, a cryptic splice donor site is formed, promoting alternative splicing and premature protein termination. A G60G silent mutation eliminates the splice donor site, yielding a functional KRAS(Q61K) variant. We detected a concordance of KRASQ61K and a G60G/A59A silent mutation in three independent pan-cancer cohorts. The region around RAS Q61 is enriched in exonic splicing enhancer (ESE) motifs and we designed mutant-specific oligonucleotides to interfere with ESE-mediated splicing, rendering the RAS(Q61) protein non-functional in a mutant-selective manner. The induction of aberrant splicing by antisense oligonucleotides demonstrated therapeutic effects in vitro and in vivo. By studying the splicing necessary for a functional KRAS(Q61K), we uncover a mutant-selective treatment strategy for RASQ61 cancer and expose a mutant-specific vulnerability, which could potentially be exploited for therapy in other genetic contexts.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Mutación Silenciosa , Empalme Alternativo/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Oncogenes/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Sitios de Empalme de ARN/genética
20.
Cancer Res ; 82(8): 1633-1645, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35149586

RESUMEN

In-frame insertions in exon 20 of HER2 are the most common HER2 mutations in patients with non-small cell lung cancer (NSCLC), a disease in which approved EGFR/HER2 tyrosine kinase inhibitors (TKI) display poor efficiency and undesirable side effects due to their strong inhibition of wild-type (WT) EGFR. Here, we report a HER2-selective covalent TKI, JBJ-08-178-01, that targets multiple HER2 activating mutations, including exon 20 insertions as well as amplification. JBJ-08-178-01 displayed strong selectivity toward HER2 mutants over WT EGFR compared with other EGFR/HER2 TKIs. Determination of the crystal structure of HER2 in complex with JBJ-08-178-01 suggests that an interaction between the inhibitor and Ser783 may be responsible for HER2 selectivity. The compound showed strong antitumoral activity in HER2-mutant or amplified cancers in vitro and in vivo. Treatment with JBJ-08-178-01 also led to a reduction in total HER2 by promoting proteasomal degradation of the receptor. Taken together, the dual activity of JBJ-08-178-01 as a selective inhibitor and destabilizer of HER2 represents a combination that may lead to better efficacy and tolerance in patients with NSCLC harboring HER2 genetic alterations or amplification. SIGNIFICANCE: This study describes unique mechanisms of action of a new mutant-selective HER2 kinase inhibitor that reduces both kinase activity and protein levels of HER2 in lung cancer.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Exones , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/efectos adversos , Receptor ErbB-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...