Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Neuron ; 112(2): 288-305.e7, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37977151

RESUMEN

Hunger is an internal state that not only invigorates feeding but also acts as a contextual cue for higher-order control of anticipatory feeding-related behavior. The ventral hippocampus is crucial for differentiating optimal behavior across contexts, but how internal contexts such as hunger influence hippocampal circuitry is unknown. In this study, we investigated the role of the ventral hippocampus during feeding behavior across different states of hunger in mice. We found that activity of a unique subpopulation of neurons that project to the nucleus accumbens (vS-NAc neurons) increased when animals investigated food, and this activity inhibited the transition to begin eating. Increases in the level of the peripheral hunger hormone ghrelin reduced vS-NAc activity during this anticipatory phase of feeding via ghrelin-receptor-dependent increases in postsynaptic inhibition and promoted the initiation of eating. Together, these experiments define a ghrelin-sensitive hippocampal circuit that informs the decision to eat based on internal state.


Asunto(s)
Ingestión de Alimentos , Ghrelina , Ratones , Animales , Ghrelina/fisiología , Ingestión de Alimentos/fisiología , Hipocampo , Transducción de Señal/fisiología , Conducta Alimentaria/fisiología
2.
Elife ; 122023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37489746

RESUMEN

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is essential for long-term potentiation (LTP) of excitatory synapses that is linked to learning and memory. In this study, we focused on understanding how interactions between CaMKIIα and the actin-crosslinking protein α-actinin-2 underlie long-lasting changes in dendritic spine architecture. We found that association of the two proteins was unexpectedly elevated within 2 minutes of NMDA receptor stimulation that triggers structural LTP in primary hippocampal neurons. Furthermore, disruption of interactions between the two proteins prevented the accumulation of enlarged mushroom-type dendritic spines following NMDA receptor activation. α-Actinin-2 binds to the regulatory segment of CaMKII. Calorimetry experiments, and a crystal structure of α-actinin-2 EF hands 3 and 4 in complex with the CaMKII regulatory segment, indicate that the regulatory segment of autoinhibited CaMKII is not fully accessible to α-actinin-2. Pull-down experiments show that occupation of the CaMKII substrate-binding groove by GluN2B markedly increases α-actinin-2 access to the CaMKII regulatory segment. Furthermore, in situ labelling experiments are consistent with the notion that recruitment of CaMKII to NMDA receptors contributes to elevated interactions between the kinase and α-actinin-2 during structural LTP. Overall, our study provides new mechanistic insight into the molecular basis of structural LTP and reveals an added layer of sophistication to the function of CaMKII.


Asunto(s)
Actinina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Actinina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Espinas Dendríticas/metabolismo , Sinapsis/metabolismo , Potenciación a Largo Plazo
3.
Methods Mol Biol ; 2483: 15-31, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35286667

RESUMEN

Protein Kinase A (PKA) is the major intracellular receptor for cAMP. Research into this prototype kinase is supported by kinase assays that are typically performed in vitro using radio-labeled ATP. For in vivo studies, genetically encoded FRET-based sensors have become popular for monitoring PKA activity. Here, we show that it is also possible to apply such reporters in vitro. We describe how to express and purify milligram quantities of a FRET-based PKA activity reporter using cultured human embryonic kidney cells. We demonstrate how to utilize the purified reporter in a plate reader to determine the IC50 for the widely utilized PKA inhibitor H89 in the presence of a physiologically relevant concentration of ATP. The protocol takes advantage of the economical transfection reagent polyethylenimine and can be performed in a standard cell culture facility. Whereas assays based on radiolabelling are more sensitive, the approach presented here has several advantages: It enables continuous measurement of changes in substrate phosphorylation; a single preparation produces enough reporter for thousands of recordings; the reporter has a long shelf life; and it avoids the safety considerations that arise when working with radioactive material.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Transferencia Resonante de Energía de Fluorescencia , Animales , Bioensayo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional
4.
Elife ; 102021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34612814

RESUMEN

Interplay between the second messengers cAMP and Ca2+ is a hallmark of dynamic cellular processes. A common motif is the opposition of the Ca2+-sensitive phosphatase calcineurin and the major cAMP receptor, protein kinase A (PKA). Calcineurin dephosphorylates sites primed by PKA to bring about changes including synaptic long-term depression (LTD). AKAP79 supports signaling of this type by anchoring PKA and calcineurin in tandem. In this study, we discovered that AKAP79 increases the rate of calcineurin dephosphorylation of type II PKA regulatory subunits by an order of magnitude. Fluorescent PKA activity reporter assays, supported by kinetic modeling, show how AKAP79-enhanced calcineurin activity enables suppression of PKA without altering cAMP levels by increasing PKA catalytic subunit capture rate. Experiments with hippocampal neurons indicate that this mechanism contributes toward LTD. This non-canonical mode of PKA regulation may underlie many other cellular processes.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Calcineurina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , Escherichia coli , Células HEK293 , Hipocampo/metabolismo , Humanos , Depresión Sináptica a Largo Plazo , Ratas Sprague-Dawley , Transducción de Señal
5.
J Biol Chem ; 296: 100387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617876

RESUMEN

Like other pentameric ligand-gated channels, glycine receptors (GlyRs) contain long intracellular domains (ICDs) between transmembrane helices 3 and 4. Structurally characterized GlyRs are generally engineered to have a very short ICD. We show here that for one such construct, zebrafish GlyREM, the agonists glycine, ß-alanine, taurine, and GABA have high efficacy and produce maximum single-channel open probabilities greater than 0.9. In contrast, for full-length human α1 GlyR, taurine and GABA were clearly partial agonists, with maximum open probabilities of 0.46 and 0.09, respectively. We found that the elevated open probabilities in GlyREM are not due to the limited sequence differences between the human and zebrafish orthologs, but rather to replacement of the native ICD with a short tripeptide ICD. Consistent with this interpretation, shortening the ICD in the human GlyR increased the maximum open probability produced by taurine and GABA to 0.90 and 0.70, respectively, but further engineering it to resemble GlyREM (by introducing the zebrafish transmembrane helix 4 and C terminus) had no effect. Furthermore, reinstating the native ICD to GlyREM converted taurine and GABA to partial agonists, with maximum open probabilities of 0.66 and 0.40, respectively. Structural comparison of transmembrane helices 3 and 4 in short- and long-ICD GlyR subunits revealed that ICD shortening does not distort the orientation of these helices within each subunit. This suggests that the effects of shortening the ICD stem from removing a modulatory effect of the native ICD on GlyR gating, revealing a new role for the ICD in pentameric ligand-gated channels.


Asunto(s)
Glicina/farmacología , Receptores de Glicina/agonistas , Taurina/farmacología , beta-Alanina/farmacología , Ácido gamma-Aminobutírico/farmacología , Secuencia de Aminoácidos , Animales , Células Cultivadas , GABAérgicos/farmacología , Glicinérgicos/farmacología , Humanos , Técnicas de Placa-Clamp/métodos , Dominios Proteicos , Receptores de Glicina/metabolismo , Relación Estructura-Actividad , Pez Cebra
6.
Methods Mol Biol ; 2188: 243-257, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33119855

RESUMEN

Cultured hippocampal slices from rodents, in which the architecture and functional properties of the hippocampal network are largely preserved, have proved to be a powerful substrate for studying healthy and pathological neuronal mechanisms. Here, we delineate the membrane-interface method for maintaining organotypic slices in culture for several weeks. The protocol includes procedures for dissecting hippocampus from rat brain, and collecting slices using a vibratome. This method provides the experimenter with easy access to both the brain tissue and culture medium, which facilitates genetic and pharmacological manipulations and enables experiments that incorporate imaging and electrophysiology. The method is generally applicable to rats of different ages, and to different brain regions, and can be modified for culture of slices from other species including mice.


Asunto(s)
Hipocampo/fisiología , Técnicas de Cultivo de Órganos/métodos , Animales , Disección/métodos , Hipocampo/anatomía & histología , Hipocampo/citología , Ratas , Ratas Sprague-Dawley , Ratas Wistar
7.
Biochem Soc Trans ; 47(5): 1355-1366, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31671183

RESUMEN

cAMP-dependent protein kinase (PKA) plays a central role in important biological processes including synaptic plasticity and sympathetic stimulation of the heart. Elevations of cAMP trigger release of PKA catalytic (C) subunits from PKA holoenzymes, thereby coupling cAMP to protein phosphorylation. Uncontrolled C subunit activity, such as occurs in genetic disorders in which regulatory subunits are depleted, is pathological. Anchoring proteins that associate with PKA regulatory subunits are important for localising PKA activity in cells. However, anchoring does not directly explain how unrestrained 'free swimming' of C subunits is avoided following C subunit release. In this review, I discuss new mechanisms that have been posited to account for this old problem. One straightforward explanation is that cAMP does not trigger C subunit dissociation but instead activates intact PKA holoenzymes whose activity is restrained through anchoring. A comprehensive comparison of observations for and against cAMP-activation of intact PKA holoenzymes does not lend credence to this mechanism. Recent measurements have revealed that PKA regulatory subunits are expressed at very high concentrations, and in large molar excess relative to C subunits. I discuss the implications of these skewed PKA subunit concentrations, before considering how phosphorylation of type II regulatory subunits and myristylation of C subunits are likely to contribute to controlling C subunit diffusion and recapture in cells. Finally, I speculate on future research directions that may be pursued on the basis of these emerging mechanisms.


Asunto(s)
Dominio Catalítico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Activación Enzimática , Humanos , Fosforilación
8.
Nat Commun ; 10(1): 4312, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541113

RESUMEN

Desensitization is a canonical property of ligand-gated ion channels, causing progressive current decline in the continued presence of agonist. AMPA-type glutamate receptors (AMPARs), which mediate fast excitatory signaling throughout the brain, exhibit profound desensitization. Recent cryo-EM studies of AMPAR assemblies show their ion channels to be closed in the desensitized state. Here we present evidence that homomeric Q/R-edited AMPARs still allow ions to flow when the receptors are desensitized. GluA2(R) expressed alone, or with auxiliary subunits (γ-2, γ-8 or GSG1L), generates large fractional steady-state currents and anomalous current-variance relationships. Our results from fluctuation analysis, single-channel recording, and kinetic modeling, suggest that the steady-state current is mediated predominantly by conducting desensitized receptors. When combined with crystallography this unique functional readout of a hitherto silent state enabled us to examine cross-linked cysteine mutants to probe the conformation of the desensitized ligand binding domain of functioning AMPAR complexes.


Asunto(s)
Receptores AMPA/química , Receptores AMPA/metabolismo , Biofisica , Cristalografía por Rayos X , Ácido Glutámico , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Estructura Molecular , Neurociencias , Unión Proteica , Dominios Proteicos , Receptores AMPA/genética
9.
Nat Commun ; 9(1): 4441, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30361475

RESUMEN

Deregulation of the ubiquitin ligase E6AP is causally linked to the development of human disease, including cervical cancer. In complex with the E6 oncoprotein of human papillomaviruses, E6AP targets the tumor suppressor p53 for degradation, thereby contributing to carcinogenesis. Moreover, E6 acts as a potent activator of E6AP by a yet unknown mechanism. However, structural information explaining how the E6AP-E6-p53 enzyme-substrate complex is assembled, and how E6 stimulates E6AP, is largely missing. Here, we develop and apply different crosslinking mass spectrometry-based approaches to study the E6AP-E6-p53 interplay. We show that binding of E6 induces conformational rearrangements in E6AP, thereby positioning E6 and p53 in the immediate vicinity of the catalytic center of E6AP. Our data provide structural and functional insights into the dynamics of the full-length E6AP-E6-p53 enzyme-substrate complex, demonstrating how E6 can stimulate the ubiquitin ligase activity of E6AP while facilitating ubiquitin transfer from E6AP onto p53.


Asunto(s)
Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Sitios de Unión , Humanos , Espectrometría de Masas , Modelos Biológicos , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato , Ubiquitinación
10.
Cell Signal ; 49: 46-58, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29847775

RESUMEN

Calcineurin and calmodulin-dependent protein kinase II (CaMKII) are both highly abundant in neurons, and both are activated by calmodulin at similar Ca2+ concentrations in the test tube. However, they fulfill opposite functions in dendritic spines, with CaMKII activity driving long-term synaptic potentiation following large influxes of Ca2+ through NMDA-type glutamate receptors (NMDARs), and calcineurin responding to smaller influxes of Ca2+ through the same receptors to induce long-term depression. In this review, we explore the notion that precise dynamic localisation of the two enzymes at different sites within dendritic spines is fundamental to this behaviour. We describe the structural basis of calcineurin and CaMKII localisation by their interaction with proteins including AKAP79, densin-180, α-actinin, and NMDARs. We then consider how interactions with these proteins likely position calcineurin and CaMKII at different distances from Ca2+ microdomains emanating from the mouths of NMDARs in order to drive the divergent responses. We also highlight shortcomings in our current understanding of synaptic localisation of these two important signalling enzymes.


Asunto(s)
Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Espinas Dendríticas/metabolismo , Animales , Calcineurina/química , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Espinas Dendríticas/ultraestructura , Humanos , Potenciación a Largo Plazo , Dominios Proteicos , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal
11.
Nat Commun ; 8(1): 1681, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29162807

RESUMEN

AKAP79/150 is essential for coordinating second messenger-responsive enzymes in processes including synaptic long-term depression. Ca2+ directly regulates AKAP79 through its effector calmodulin (CaM), but the molecular basis of this regulation was previously unknown. Here, we report that CaM recognizes a '1-4-7-8' pattern of hydrophobic amino acids starting at Trp79 in AKAP79. Cross-linking coupled to mass spectrometry assisted mapping of the interaction site. Removal of the CaM-binding sequence in AKAP79 prevents formation of a Ca2+-sensitive interface between AKAP79 and calcineurin, and increases resting cellular PKA phosphorylation. We determined a crystal structure of CaM bound to a peptide encompassing its binding site in AKAP79. CaM adopts a highly compact conformation in which its open Ca2+-activated C-lobe and closed N-lobe cooperate to recognize a mixed α/310 helix in AKAP79. The structure guided a bioinformatic screen to identify potential sites in other proteins that may employ similar motifs for interaction with CaM.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Calcineurina/metabolismo , Calcio/metabolismo , Calmodulina/genética , Biología Computacional , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , Humanos , Espectrometría de Masas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Nat Struct Mol Biol ; 24(11): 977-985, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28967882

RESUMEN

γ-Aminobutyric acid receptors (GABAARs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABAARs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABAAR function requires high-resolution structures. Here we present the first atomic structures of a GABAAR chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABAARs in neurological disorders.


Asunto(s)
Neurotransmisores/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Conformación Proteica , Receptores de GABA-A/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(39): 10414-10419, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28893983

RESUMEN

Protein phosphorylation by cyclic AMP-dependent protein kinase (PKA) underlies key cellular processes, including sympathetic stimulation of heart cells, and potentiation of synaptic strength in neurons. Unrestrained PKA activity is pathological, and an enduring challenge is to understand how the activity of PKA catalytic subunits is directed in cells. We developed a light-activated cross-linking approach to monitor PKA subunit interactions with temporal precision in living cells. This enabled us to refute the recently proposed theory that PKA catalytic subunits remain tethered to regulatory subunits during cAMP elevation. Instead, we have identified other features of PKA signaling for reducing catalytic subunit diffusion and increasing recapture rate. Comprehensive quantitative immunoblotting of protein extracts from human embryonic kidney cells and rat organs reveals that regulatory subunits are always in large molar excess of catalytic subunits (average ∼17-fold). In the majority of organs tested, type II regulatory (RII) subunits were found to be the predominant PKA subunit. We also examined the architecture of PKA complexes containing RII subunits using cross-linking coupled to mass spectrometry. Quantitative comparison of cross-linking within a complex of RIIß and Cß, with or without the prototypical anchoring protein AKAP18α, revealed that the dimerization and docking domain of RIIß is between its second cAMP binding domains. This architecture is compatible with anchored RII subunits directing the myristylated N terminus of catalytic subunits toward the membrane for release and recapture within the plane of the membrane.


Asunto(s)
Dominio Catalítico/fisiología , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/química , Miocitos Cardíacos/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Línea Celular , AMP Cíclico/química , Células HEK293 , Humanos , Masculino , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Miocardio/metabolismo , Fosforilación/fisiología , Unión Proteica , Estructura Secundaria de Proteína , Ratas , Ratas Sprague-Dawley
14.
Front Pharmacol ; 6: 164, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300778

RESUMEN

Intracellular fluctuations of the second messenger cyclic AMP (cAMP) are regulated with spatial and temporal precision. This regulation is supported by the sophisticated arrangement of cyclases, phosphodiesterases, anchoring proteins, and receptors for cAMP. Discovery of these nuances to cAMP signaling has been facilitated by the development of genetically encodable tools for monitoring and manipulating cAMP and the proteins that support cAMP signaling. In this review, we discuss the state-of-the-art in development of different genetically encoded tools for sensing cAMP and the activity of its primary intracellular receptor protein kinase A (PKA). We introduce sequences for encoding adenylyl cyclases that enable cAMP levels to be artificially elevated within cells. We chart the evolution of sequences for selectively modifying protein-protein interactions that support cAMP signaling, and for driving cAMP sensors and manipulators to different subcellular locations. Importantly, these different genetically encoded tools can be applied synergistically, and we highlight notable instances that take advantage of this property. Finally, we consider prospects for extending the utility of the tool set to support further insights into the role of cAMP in health and disease.

15.
J Biol Chem ; 290(19): 12058-67, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25802336

RESUMEN

Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic ß-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response.


Asunto(s)
Cardiomegalia/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Ligandos , Mutación , Fosforilación , Unión Proteica , Ratas , Receptores Adrenérgicos beta/metabolismo , Serina/química , Transducción de Señal , Treonina/química , Tirosina/química , Dominios Homologos src
16.
Methods Mol Biol ; 1294: 167-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25783885

RESUMEN

cAMP-dependent protein kinase (PKA) is tethered at different subcellular locations by A-kinase anchoring proteins (AKAPs). AKAPs present amphipathic helices that bind to the docking and dimerization (D/D) domain of PKA regulatory subunits. Peptide disruptors derived from AKAP anchoring helices are powerful tools for determining whether PKA anchoring is important in different biological processes. Focusing on the reciprocal side of the AKAP-PKA interface can enable development of tools for determining the roles of individual AKAPs. Accordingly, here we describe a bacteriophage screening procedure for identifying variants of PKA regulatory subunit D/D domains that bind selectively to individual AKAPs. This procedure can be adapted for engineering specificity into other shared protein interfaces.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Bacteriófago T7/genética , Proteínas Quinasas Dependientes de AMP Cíclico/química , Péptidos/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Bacteriófago T7/metabolismo , Sitios de Unión , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Simulación del Acoplamiento Molecular , Péptidos/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
17.
J Cell Sci ; 126(Pt 20): 4537-43, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24124191

RESUMEN

The second messenger cyclic AMP (cAMP) operates in discrete subcellular regions within which proteins that synthesize, break down or respond to the second messenger are precisely organized. A burgeoning knowledge of compartmentalized cAMP signaling is revealing how the local control of signaling enzyme activity impacts upon disease. The aim of this Cell Science at a Glance article and the accompanying poster is to highlight how misregulation of local cyclic AMP signaling can have pathophysiological consequences. We first introduce the core molecular machinery for cAMP signaling, which includes the cAMP-dependent protein kinase (PKA), and then consider the role of A-kinase anchoring proteins (AKAPs) in coordinating different cAMP-responsive proteins. The latter sections illustrate the emerging role of local cAMP signaling in four disease areas: cataracts, cancer, diabetes and cardiovascular diseases.


Asunto(s)
AMP Cíclico/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Catarata/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Neoplasias/metabolismo , Sistemas de Mensajero Secundario
18.
J Biol Chem ; 288(24): 17111-21, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23625929

RESUMEN

PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Técnicas de Visualización de Superficie Celular , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Secuencia de Consenso , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Análisis de Secuencia de ADN
19.
Bioessays ; 34(7): 599-608, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22528972

RESUMEN

The postsynaptic density (PSD) is a massive multi-protein complex whose functions include positioning signalling molecules for induction of long-term potentiation (LTP) and depression (LTD) of synaptic strength. These processes are thought to underlie memory formation. To understand how the PSD coordinates bidirectional synaptic plasticity with different synaptic activation patterns, it is necessary to determine its three-dimensional structure. A structural model of the PSD is emerging from investigation of its molecular composition and connectivity, in addition to structural studies at different levels of resolution. Technical innovations including mass spectrometry of cross-linked proteins and super-resolution light microscopy can drive progress. Integrating different information relating to PSD structure is challenging since the structure is so large and complex. The reconstruction of a PSD subcomplex anchored by AKAP79 exemplifies on a small scale how integration can be achieved. With its entire molecular structure coming into focus, this is a unique opportunity to study the PSD.


Asunto(s)
Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Proteínas del Tejido Nervioso/química , Plasticidad Neuronal , Densidad Postsináptica/química , Proteínas de Anclaje a la Quinasa A/química , Membrana Celular/química , Biología Computacional , Cristalografía por Rayos X/métodos , Humanos , Espectrometría de Masas/métodos , Modelos Moleculares , Estructura Molecular , Mapeo de Interacción de Proteínas/métodos , Transporte de Proteínas , Transducción de Señal
20.
EMBO Mol Med ; 4(1): 15-26, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22095752

RESUMEN

A decline in ocular lens transparency known as cataract afflicts 90% of individuals by the age 70. Chronic deterioration of lens tissue occurs as a pathophysiological consequence of defective water and nutrient circulation through channel and transporter proteins. A key component is the aquaporin-0 (AQP0) water channel whose permeability is tightly regulated in healthy lenses. Using a variety of cellular and biochemical approaches we have discovered that products of the A-kinase anchoring protein 2 gene (AKAP2/AKAP-KL) form a stable complex with AQP0 to sequester protein kinase A (PKA) with the channel. This permits PKA phosphorylation of serine 235 within a calmodulin (CaM)-binding domain of AQP0. The additional negative charge introduced by phosphoserine 235 perturbs electrostatic interactions between AQP0 and CaM to favour water influx through the channel. In isolated mouse lenses, displacement of PKA from the AKAP2-AQP0 channel complex promotes cortical cataracts as characterized by severe opacities and cellular damage. Thus, anchored PKA modulation of AQP0 is a homeostatic mechanism that must be physically intact to preserve lens transparency.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Acuaporinas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Ojo/metabolismo , Cristalino/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Acuaporinas/química , Calmodulina/metabolismo , Catarata/metabolismo , Catarata/patología , Proteínas del Ojo/química , Cristalino/enzimología , Ratones , Ratones Endogámicos C57BL , Fosfopéptidos/análisis , Fosforilación , Unión Proteica , Ovinos , Electricidad Estática , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA