Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Physiol ; 12(1): coad106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38293639

RESUMEN

The Pace-of-Life syndrome proposes that behavioural, physiological and immune characteristics vary along a slow-fast gradient. Urbanization poses several physiological challenges to organisms. However, little is known about how the health status of frogs is affected by urbanization in the Tropics, which have a faster and more recent urbanization than the northern hemisphere. Here, we analysed a suite of physiological variables that reflect whole organism health, reproduction, metabolic and circulatory physiology and leukocyte responses in Leptodactylus podicipinus. Specifically, we tested how leukocyte profile, erythrocyte morphometrics and germ cell density, as well as somatic indices and erythrocyte nuclear abnormalities differ throughout the adult life span between urban and rural populations. We used Phenotypic Trajectory Analysis to test the effect of age and site on each of the multivariate data sets; and a Generalised Linear Model to test the effect of site and age on nuclear abnormalities. Somatic indices, erythrocyte nuclear abnormalities, erythrocyte morphometrics and leukocyte profile differed between populations, but less so for germ cell density. We found a large effect of site on nuclear abnormalities, with urban frogs having twice as many abnormalities as rural frogs. Our results suggest that urban frogs have a faster pace of life, but the response of phenotypic compartments is not fully concerted.

2.
Environ Sci Pollut Res Int ; 28(44): 62593-62604, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34196865

RESUMEN

Environmental pollution plays an important role in amphibian population decline. Contamination with endocrine disrupting chemicals (EDCs) is particularly worrying due to their capacity to adversely affect organisms at low doses. We hypothesized that exposure to EDCs such as 4-nonylphenol (NP) and cyproterone acetate (CPA) could trigger responses in the liver and gonads, due to toxic and endocrine disrupting effects. Growth rate may also be impaired by contamination. We investigated sublethal effects of a 28-day exposure to three different concentrations of NP and CPA on liver pigmentation, gonadal morphology, body mass, and length of tadpoles and juveniles Lithobates catesbeianus. Liver pigmentation and the gonadal morphologies of treated tadpoles did not differ from control, but growth rate was impaired by both pollutants. Juveniles treated with 10 µg/L NP and 0.025 and 0.25 ng/L CPA displayed increased liver melanin pigmentation, but gonadal morphologies, sex ratios, and body mass were not affected after treatments. The increase in liver pigmentation may be related to defensive, cytoprotective role of melanomacrophages. The decreased growth rate in tadpoles indicates toxic effects of NP and CPA. Thus, contamination with NP and CPA remains a concern and sublethal effects of different dosages of the compounds on native species should be determined.


Asunto(s)
Anuros , Contaminantes Químicos del Agua , Animales , Acetato de Ciproterona/toxicidad , Gónadas , Larva , Hígado , Fenoles , Rana catesbeiana , Contaminantes Químicos del Agua/toxicidad
3.
J Morphol ; 280(4): 480-493, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30847955

RESUMEN

Intraspecific variation during the anuran larval period has been analyzed mainly in relation to the timing of metamorphosis and body size at metamorphosis. However, other traits may vary as well. We examined two developmental series of Boana riojana from the same population in two consecutive years and describe intraspecific variation in larvae of this species. We discuss how variation, if present, may influence its life cycle. We found that both larval series differed in the larval period length, one twice as long as the other. This variation primarily depended on when breeding occurred, metamorphosis was achieved during late spring in both generations and at similar sizes, and only the rate of larval development during premetamorphosis varied extensively between years. This is consistent with thyroid gland activity because when it became active the developmental trajectory became more canalized. No variation of staging sequence occurred in relation to the different durations of the larval period. However, in the long-lasting series we found two different morphs. Also, integument, thyroid gland, skeleton, and testis differentiation events occurred at the same developing stages. In contrast, ovarian differentiation proceeded at the same absolute age in both series. Sexual dimorphism becomes evident within the year after metamorphosis. The intraspecific heterochrony that we describe for the larval development of B. riojana does not lead to phenotypic variation at the end of metamorphosis. We discuss the importance of analyzing growth and development independently. Each proceeds differently in time, but with an interdependence at some point, because size and shape do not vary at the end of metamorphosis.


Asunto(s)
Anuros/crecimiento & desarrollo , Estadios del Ciclo de Vida , Envejecimiento/fisiología , Animales , Anuros/anatomía & histología , Tamaño Corporal , Femenino , Integumento Común/anatomía & histología , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Sistema de la Línea Lateral/anatomía & histología , Masculino , Fenotipo , Especificidad de la Especie , Factores de Tiempo
4.
J Exp Zool B Mol Dev Evol ; 328(6): 546-574, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28597591

RESUMEN

Anurans have three primary types of locomotion: walking, jumping, and swimming. Additionally, they may dig, climb, grasp, etc. All adult anurans have four limbs, with four fingers on the hands and five toes on the feet. We summarized and updated knowledge on the interspecific variation within anuran limbs, then discuss how developmental constraints (e.g., in size) and novelties may have influenced anuran diversification through the locomotion. We analyze morphological variation from limb bud stages up to the final limb form resulting from certain skeletal organization and growth. We find limited morphometric variations in the skeleton of different developmental modules (i.e., skull, trunk, urostyle, limbs) indicate that the anuran body shape is largely constrained. We identify specializations of the stylopodium, zeugopodium, and proximal carpals/tarsals that have evolved to facilitiate saltatorial locomotion. We show that the anuran prepollex and prehallux are not vestigial digits and that they have come to serve specialized function. Medial rotation of the manus in anurans appears to have evolved to help distribute the force of impact upon landing at the end of a jump. Additional skeletal elements in anuran limbs are intercalary elements and sesamoids. The intercalary elements appear within neobatrachians and are integrated with digital pads in lineages capable of locomotion on smooth vertical surfaces. They have allowed arboreal anurans to occupy a wide range of arboreal habitats.


Asunto(s)
Anuros/anatomía & histología , Extremidades/anatomía & histología , Extremidades/fisiología , Animales , Anuros/clasificación , Anuros/genética , Evolución Biológica , Locomoción , Especificidad de la Especie
5.
Zoology (Jena) ; 119(6): 489-499, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27495378

RESUMEN

Sexual maturity involves the differentiation of the reproductive system, the maturation of germ cells, and the development of secondary sexual characteristics. Even though this topic has received much attention, little is known about the sequence of events that encompass reproductive maturation in anurans and what it could reveal about the developmental basis of life cycle evolution. The discovery of froglets of Pseudis minuta with incipient vocal sacs calling in breeding pools alongside several larger adult specimens with fully developed vocal sacs raised the question of the timing of sexual maturity in this species. Here we describe the sequence and timing of differentiation, development and maturation of the vocal sac apparatus and the testes in P. minuta (Anura, Hylidae), in order to establish a timeline of events leading to sexual maturity. Differentiation of the vocal sac apparatus begins at the final metamorphic stages, earlier than reported for other species, and the vocal sac acquires its final shape during the early postmetamorphic period. These modifications occur after gonadal differentiation, which begins early during the larval period and proceeds with a highly accelerated rate of development (e.g., secondary spermatids appear well before metamorphic climax), a situation reported previously for other anuran species only in the genus Pseudis. These results, together with a skeletochronological analysis showing that some calling specimens presented no lines of arrested growth, indicate acceleration in the timing of sexual maturity in Pseudis, and raise questions about the interdependence/decoupling during the development of the different components involved in reaching the adult stage.


Asunto(s)
Anuros/crecimiento & desarrollo , Maduración Sexual/fisiología , Animales , Femenino , Larva/crecimiento & desarrollo , Masculino , Especificidad de la Especie , Testículo/crecimiento & desarrollo
6.
Evodevo ; 7: 5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925212

RESUMEN

The Neotropical frog genera Ceratophrys, Chacophrys and Lepidobatrachus form the monophyletic family Ceratophryidae. Although in- and out-group relationships are not fully resolved, the monophyly of the three genera is well supported by both morphological and molecular data. Much is known about the morphology of the ceratophryids, but there is little comparative information on how modification of a common ancestral developmental pathway played a role in shaping their particular body plans. Herein, we review morphological variation during ceratophryid ontogeny in order to explore the role of development in their evolution. The ceratophryids are collectively characterized by rapid larval development with respect to other anurans, yet the three genera differ in their postmetamorphic growth rates to sexual maturity. Derived traits in the group can be divided into many homoplastic features that evolved in parallel with those of anurans with fossorial/burrowing behaviors in semiarid environments, and apomorphies. Morphological novelties have evolved in their feeding mechanism, which makes them capable of feeding on exceptional large prey. Lepidobatrachus is unusual in having reduced the ecomorphological differences between its larvae and adults. As a result, both the larvae and the frog are similarly able to capture large prey underwater. Some unique features in Lepidobatrachus are differentiated in the tadpole and then exaggerated in the adult (e.g., the posterior displaced jaw articulation) in a manner unobserved in any other anurans.

7.
Anat Rec (Hoboken) ; 293(10): 1646-68, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20652935

RESUMEN

Sesamoids are skeletal elements rarely considered in studies of the vertebrate skeleton. In this work, we integrate ontogenetic data of anuran sesamoids in two species (Leptodactylus latinasus and Pleurodema cf. guayapae), the related structures (tendons, muscles, and joints) in L. latinasus, and a survey of sesamoid distribution in 185 anuran taxa. Our main goals are: (1) to contribute to the knowledge of the comparative anatomy of sesamoids in tetrapods; (2) to provide additional developmental evidence to interpret the ontogenetic pattern of sesamoids in anurans, as a key to elucidate that of tetrapods in general; (3) to provide data about tendon development in relation to sesamoid development in anurans for the first time; and (4) to propose a pattern of anuran sesamoid distribution. The homologies of sesamoids across tetrapods are discussed here. Observations were made in cleared and stained skeletal whole-mounts. Fifty-four sesamoids were found in anurans, thirty-seven of which occur in L. latinasus. The traditional point of view of embedded sesamoids always resulting from biomechanical stimuli of a previously existing tendon is not sustained by our data. Many sesamoids arise before the differentiation of a tendinous tissue. Our survey results in a data set where the two big anuran clades, Hyloides (12 families) and Ranoides (14 families), were represented. The matrix has 38% missing entries. Most of the surveyed sesamoids have multiple origins, with only three of them (about 19%) having one origin.


Asunto(s)
Anuros/anatomía & histología , Huesos Sesamoideos/anatomía & histología , Animales , Anuros/fisiología , Evolución Biológica , Desarrollo Óseo/fisiología , Diferenciación Celular , Extremidades/anatomía & histología , Músculo Esquelético/anatomía & histología , Filogenia , Huesos Sesamoideos/crecimiento & desarrollo , Especificidad de la Especie , Tendones/anatomía & histología , Tendones/citología
8.
J Morphol ; 271(4): 496-510, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20013791

RESUMEN

Recent studies have described the giant tadpole, delayed metamorphic transformations, and absence of postmetamorphic growth of the skeleton of Pseudis Platensis. These features address questions about derived patterns of life cycles and the role of the heterochrony during the metamorphosis in anurans. Using anatomical methods, we provide new data on the development of reproductive, digestive and integument systems, and age inference obtained from ontogenetic series of Pseudis platensis. Our results indicate that at the end of metamorphosis, the adult skin is completely differentiated, including the calcified dermal layer; the testis has seminiferous tubules with spermatogonia, spermatocytes, and spermatids; ovarian sacs present previtellogenic ova; and the adult digestive tract is fully formed. The froglets differ from adults only in being unable to reproduce. The entire life cycle of P. platensis can occur in 4 years. In the first year, larval development, growth to adult size, and gonad differentiation are completed. Long larval development rather than size of the tadpoles seems to be involved in the absence of juvenile stages.


Asunto(s)
Anuros/crecimiento & desarrollo , Metamorfosis Biológica/fisiología , Envejecimiento/fisiología , Animales , Femenino , Fémur/anatomía & histología , Tracto Gastrointestinal/crecimiento & desarrollo , Gónadas/anatomía & histología , Gónadas/citología , Integumento Común/crecimiento & desarrollo , Larva/citología , Larva/crecimiento & desarrollo , Masculino , Tamaño de los Órganos , Diferenciación Sexual , Factores de Tiempo
9.
J Morphol ; 270(2): 205-20, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18946869

RESUMEN

The aquatic frog Pseudis platensis has a giant tadpole, long developmental time, and dissociated metamorphic events that include later offset of larval somatic morphologies. Moreover, when the tadpole metamorphoses, the young frog is nearly the size of an adult, suggesting that this species has low rates of postmetamorphic growth. Herein, we study the development of the skeleton during larval development up to the end of metamorphosis, which is denoted by the complete lost of the tail in P. platensis. Our study revealed heterochronic differences in skeletal development compared with that of most anurans; these involve the complete differentiation of skull bones and the extensive ossification of the postcranial skeleton before completion of metamorphosis. The skull of metamorphosing P. platensis has an ossified sphenethmoid and a fully formed plectral apparatus, thus differing with regard to the pattern observed in most anurans in which both developmental events take place during the postmetamorphic life. Despite the fact that the iliosacral articulation and the urostyle are present at the end of metamorphosis as in most anurans, ossification/calcification of carpus, tarsus, and limb epihyses during metamorphosis of P. platensis suggests that the postcranial skeleton lacks postmetamorphic growth. This study also includes a discussion of the pattern of development of the plectral apparatus, which allows us to propose a new hypothesis regarding pars externa plectri homology.


Asunto(s)
Anuros/anatomía & histología , Anuros/crecimiento & desarrollo , Animales , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Metamorfosis Biológica/fisiología , Microscopía , Modelos Biológicos , Sistema Musculoesquelético/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...