Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 61(2): 759-766, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34962799

RESUMEN

Photodriven oxidations of alkanes in trifluoroacetic acid using commercial and synthesized Fe(III) sources as catalyst precursors and dioxygen (O2) as the terminal oxidant are reported. The reactions produce alkyl esters and occur at ambient temperature in the presence of air, and catalytic turnover is observed for the oxidation of methane in a pure O2 atmosphere. Under optimized conditions, approximately 17% conversion of methane to methyl trifluoroacetate at more than 50% selectivity is observed. It is demonstrated that methyl trifluoroacetate is stable under catalytic conditions, and thus overoxidized products are not formed through secondary oxidation of methyl trifluoroacetate.

2.
Nat Commun ; 11(1): 3532, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669539

RESUMEN

Asexual proliferation of the Plasmodium parasites that cause malaria follows a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. By phosphoproteomic and chemical-genetic analysis, we isolate two functional targets of PfPP1 for egress: a HECT E3 protein-ubiquitin ligase; and GCα, a fusion protein composed of a guanylyl cyclase and a phospholipid transporter domain. We hypothesize that PfPP1 regulates lipid sensing by GCα and find that phosphatidylcholine stimulates PfPP1-dependent egress. PfPP1 acts as a key regulator that integrates multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.


Asunto(s)
Eritrocitos/parasitología , Plasmodium falciparum/enzimología , Proteína Fosfatasa 1/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Proliferación Celular , GMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Noqueados , Fosfatidilcolinas/química , Dominios Proteicos , Proteoma , Ubiquitina-Proteína Ligasas/metabolismo
3.
PLoS Negl Trop Dis ; 14(3): e0008104, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32119669

RESUMEN

Approximately one-third of the global population is at risk of Plasmodium vivax infection, and an estimated 7.51 million cases were reported in 2017. Although, P. vivax research is currently limited by the lack of a robust continuous in vitro culture system for this parasite, recent work optimizing short-term ex vivo culture of P. vivax from cryopreserved isolates has facilitated quantitative assays on synchronous parasites. Pairing this improved culture system with low-input Smart-seq2 RNAseq library preparation, we sought to determine whether transcriptional profiling of P. vivax would provide insight into the differential survival of parasites in different culture media. To this end we probed the transcriptional signature of three different ex vivo P. vivax samples in four different culture media using only 1000 cells for each time point taken during the course of the intraerythrocytic development cycle (IDC). Using this strategy, we achieved similar quality transcriptional data to previously reported P. vivax transcriptomes. We found little effect with varying culture media on parasite transcriptional signatures, identified many novel gametocyte-specific genes from transcriptomes of FACS-isolated gametocytes, and determined invasion ligand expression in schizonts in biological isolates and across the IDC. In total, these data demonstrate the feasibility and utility of P. vivax RNAseq-based transcriptomic studies using minimal biomass input to maximize experimental capacity.


Asunto(s)
Eritrocitos/parasitología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Malaria Vivax/parasitología , Plasmodium vivax/crecimiento & desarrollo , Adolescente , Niño , Preescolar , Medios de Cultivo/química , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Parasitología/métodos , Plasmodium vivax/genética , Análisis de Secuencia de ARN
4.
Commun Biol ; 2: 350, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552303

RESUMEN

Red blood cells (RBCs) play a critical role in oxygen transport, and are the focus of important diseases including malaria and the haemoglobinopathies. Proteins at the RBC surface can determine susceptibility to disease, however previous studies classifying the RBC proteome have not used specific strategies directed at enriching cell surface proteins. Furthermore, there has been no systematic analysis of variation in abundance of RBC surface proteins between genetically disparate human populations. These questions are important to inform not only basic RBC biology but additionally to identify novel candidate receptors for malarial parasites. Here, we use 'plasma membrane profiling' and tandem mass tag-based mass spectrometry to enrich and quantify primary RBC cell surface proteins from two sets of nine donors from the UK or Senegal. We define a RBC surface proteome and identify potential Plasmodium receptors based on either diminished protein abundance, or increased variation in RBCs from West African individuals.


Asunto(s)
Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Proteínas de la Membrana/metabolismo , Proteómica , Humanos , Proteoma , Proteómica/métodos , Biología de Sistemas/métodos
5.
mSphere ; 3(3)2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29898984

RESUMEN

The Fusarium oxysporum species complex (FOSC) is a group of soilborne pathogens causing severe disease in more than 100 plant hosts, while individual strains exhibit strong host specificity. Both chromosome transfer and comparative genomics experiments have demonstrated that lineage-specific (LS) chromosomes contribute to the host-specific pathogenicity. However, little is known about the functional importance of genes encoded in these LS chromosomes. Focusing on signaling transduction, this study compared the kinomes of 12 F. oxysporum isolates, including both plant and human pathogens and 1 nonpathogenic biocontrol strain, with 7 additional publicly available ascomycete genomes. Overall, F. oxysporum kinomes are the largest, facilitated in part by the acquisitions of the LS chromosomes. The comparative study identified 99 kinases that are present in almost all examined fungal genomes, forming the core signaling network of ascomycete fungi. Compared to the conserved ascomycete kinome, the expansion of the F. oxysporum kinome occurs in several kinase families such as histidine kinases that are involved in environmental signal sensing and target of rapamycin (TOR) kinase that mediates cellular responses. Comparative kinome analysis suggests a convergent evolution that shapes individual F. oxysporum isolates with an enhanced and unique capacity for environmental perception and associated downstream responses.IMPORTANCE Isolates of Fusarium oxysporum are adapted to survive a wide range of host and nonhost conditions. In addition, F. oxysporum was recently recognized as the top emerging opportunistic fungal pathogen infecting immunocompromised humans. The sensory and response networks of these fungi undoubtedly play a fundamental role in establishing the adaptability of this group. We have examined the kinomes of 12 F. oxysporum isolates and highlighted kinase families that distinguish F. oxysporum from other fungi, as well as different isolates from one another. The amplification of kinases involved in environmental signal relay and regulating downstream cellular responses clearly sets Fusarium apart from other Ascomycetes Although the functions of many of these kinases are still unclear, their specific proliferation highlights them as a result of the evolutionary forces that have shaped this species complex and clearly marks them as targets for exploitation in order to combat disease.


Asunto(s)
Cromosomas Fúngicos , Fusarium/enzimología , Fusarium/genética , Interacciones Huésped-Patógeno , Proteínas Quinasas/genética , Adaptación Biológica , Evolución Molecular , Fusariosis/microbiología , Especificidad del Huésped , Humanos , Fosforilación , Enfermedades de las Plantas/microbiología , Plantas , Procesamiento Proteico-Postraduccional , Transducción de Señal
6.
Genetics ; 208(4): 1657-1669, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29467168

RESUMEN

Dermatophytes include fungal species that infect humans, as well as those that also infect other animals or only grow in the environment. The dermatophyte species Trichophyton rubrum is a frequent cause of skin infection in immunocompetent individuals. While members of the T. rubrum species complex have been further categorized based on various morphologies, their population structure and ability to undergo sexual reproduction are not well understood. In this study, we analyze a large set of T. rubrum and T. interdigitale isolates to examine mating types, evidence of mating, and genetic variation. We find that nearly all isolates of T. rubrum are of a single mating type, and that incubation with T. rubrum "morphotype" megninii isolates of the other mating type failed to induce sexual development. While the region around the mating type locus is characterized by a higher frequency of SNPs compared to other genomic regions, we find that the population is remarkably clonal, with highly conserved gene content, low levels of variation, and little evidence of recombination. These results support a model of recent transition to asexual growth when this species specialized to growth on human hosts.


Asunto(s)
Genoma Fúngico , Genómica , Trichophyton/clasificación , Trichophyton/genética , Alelos , Animales , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Genómica/métodos , Humanos , Desequilibrio de Ligamiento , Tipificación de Secuencias Multilocus , Filogenia , Polimorfismo de Nucleótido Simple , Recombinación Genética , Tiña/microbiología , Secuenciación Completa del Genoma
7.
J Am Chem Soc ; 139(36): 12638-12646, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28862847

RESUMEN

Addition of high pressures of H2 to five-coordinate [(tBu)4(POCOP)Ir(CO)(H)]OTf [(tBu)4(POCOP) = κ3-C6H3-2,6-(OP(tBu)2)2] complexes results in observation of two new iridium-dihydrogen complexes. If the aryl moiety of the POCOP ligand is substituted with an electron withdrawing protonated dimethylamino group at the para position, hydrogen coordination is enhanced. Five-coordinate Ir-H complexes generated by addition of triflic acid to (tBu)4(POCOP)Ir(CO) species show an Ir-H 1H NMR chemical shift dependence on the number of equivalents of acid present. It is proposed that excess triflic acid in solution facilitates triflate dissociation from iridium, resulting in unsaturated five-coordinate Ir-H complexes. The five-coordinate iridium-hydride complexes were found to catalyze H/D exchange between H2 and CD3OD. The existence of the dihydrogen complexes, as well as isotope exchange reactions, provide evidence for proposed ionic hydrogenation intermediates for glycerol deoxygenation.

8.
Infect Immun ; 85(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28760933

RESUMEN

Plasmodium falciparum, the parasite that causes the deadliest form of malaria, has evolved multiple proteins known as invasion ligands that bind to specific erythrocyte receptors to facilitate invasion of human erythrocytes. The EBA-175/glycophorin A (GPA) and Rh5/basigin ligand-receptor interactions, referred to as invasion pathways, have been the subject of intense study. In this study, we focused on the less-characterized sialic acid-containing receptors glycophorin B (GPB) and glycophorin C (GPC). Through bioinformatic analysis, we identified extensive variation in glycophorin B (GYPB) transcript levels in individuals from Benin, suggesting selection from malaria pressure. To elucidate the importance of the GPB and GPC receptors relative to the well-described EBA-175/GPA invasion pathway, we used an ex vivo erythrocyte culture system to decrease expression of GPA, GPB, or GPC via lentiviral short hairpin RNA transduction of erythroid progenitor cells, with global surface proteomic profiling. We assessed the efficiency of parasite invasion into knockdown cells using a panel of wild-type P. falciparum laboratory strains and invasion ligand knockout lines, as well as P. falciparum Senegalese clinical isolates and a short-term-culture-adapted strain. For this, we optimized an invasion assay suitable for use with small numbers of erythrocytes. We found that all laboratory strains and the majority of field strains tested were dependent on GPB expression level for invasion. The collective data suggest that the GPA and GPB receptors are of greater importance than the GPC receptor, supporting a hierarchy of erythrocyte receptor usage in P. falciparum.


Asunto(s)
Eritrocitos/fisiología , Eritrocitos/parasitología , Glicoforinas/genética , Plasmodium falciparum/patogenicidad , Biología Computacional , Glicoforinas/metabolismo , Humanos , Ligandos , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Unión Proteica , Proteómica , Receptores de Superficie Celular/metabolismo
10.
Nat Microbiol ; 2: 17017, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28211852

RESUMEN

Plasmodium parasites, the causative agents of malaria, have evolved a unique cell division cycle in the clinically relevant asexual blood stage of infection1. DNA replication commences approximately halfway through the intracellular development following invasion and parasite growth. The schizont stage is associated with multiple rounds of DNA replication and nuclear division without cytokinesis, resulting in a multinucleated cell. Nuclei divide asynchronously through schizogony, with only the final round of DNA replication and segregation being synchronous and coordinated with daughter cell assembly2,3. However, the control mechanisms for this divergent mode of replication are unknown. Here, we show that the Plasmodium-specific kinase PfCRK4 is a key cell-cycle regulator that orchestrates multiple rounds of DNA replication throughout schizogony in Plasmodium falciparum. PfCRK4 depletion led to a complete block in nuclear division and profoundly inhibited DNA replication. Quantitative phosphoproteomic profiling identified a set of PfCRK4-regulated phosphoproteins with greatest functional similarity to CDK2 substrates, particularly proteins involved in the origin of replication firing. PfCRK4 was required for initial and subsequent rounds of DNA replication during schizogony and, in addition, was essential for development in the mosquito vector. Our results identified an essential S-phase promoting factor of the unconventional P. falciparum cell cycle. PfCRK4 is required for both a prolonged period of the intraerythrocytic stage of Plasmodium infection, as well as for transmission, revealing a broad window for PfCRK4-targeted chemotherapeutics.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Replicación del ADN , Estadios del Ciclo de Vida/genética , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Esquizontes/fisiología , Proteína Quinasa CDC2/genética , Ciclo Celular , Citocinesis , Eritrocitos/parasitología , Humanos , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
11.
Chem Sci ; 8(5): 3609-3617, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30155206

RESUMEN

The first use of a dinuclear UIII/UIII complex in the activation of small molecules is reported. The octadentate Schiff-base pyrrole, anthracene-hinged 'Pacman' ligand LA combines two strongly reducing UIII centres and three borohydride ligands in [M(THF)4][{U(BH4)}2(µ-BH4)(LA)(THF)2] 1-M, (M = Li, Na, K). The two borohydride ligands bound to uranium outside the macrocyclic cleft are readily substituted by aryloxide ligands, resulting in a single, weakly-bound, encapsulated endo group 1 metal borohydride bridging the two UIII centres in [{U(OAr)}2(µ-MBH4)(LA)(THF)2] 2-M (OAr = OC6H2t Bu3-2,4,6, M = Na, K). X-ray crystallographic analysis shows that, for 2-K, in addition to the endo-BH4 ligand the potassium counter-cation is also incorporated into the cleft through η5-interactions with the pyrrolides instead of extraneous donor solvent. As such, 2-K has a significantly higher solubility in non-polar solvents and a wider U-U separation compared to the 'ate' complex 1. The cooperative reducing capability of the two UIII centres now enforced by the large and relatively flexible macrocycle is compared for the two complexes, recognising that the borohydrides can provide additional reducing capability, and that the aryloxide-capped 2-K is constrained to reactions within the cleft. The reaction between 1-Na and S8 affords an insoluble, presumably polymeric paramagnetic complex with bridging uranium sulfides, while that with CS2 results in oxidation of each UIII to the notably high UV oxidation state, forming the unusual trithiocarbonate (CS3)2- as a ligand in [{U(CS3)}2(µ-κ2:κ2-CS3)(LA)] (4). The reaction between 2-K and S8 results in quantitative substitution of the endo-KBH4 by a bridging persulfido (S2)2- group and oxidation of each UIII to UIV, yielding [{U(OAr)}2(µ-κ2:κ2-S2)(LA)] (5). The reaction of 2-K with CS2 affords a thermally unstable adduct which is tentatively assigned as containing a carbon disulfido (CS2)2- ligand bridging the two U centres (6a), but only the mono-bridged sulfido (S)2- complex [{U(OAr)}2(µ-S)(LA)] (6) is isolated. The persulfido complex (5) can also be synthesised from the mono-bridged sulfido complex (6) by the addition of another equivalent of sulfur.

12.
G3 (Bethesda) ; 7(2): 361-376, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-27913634

RESUMEN

Three members of the Puccinia genus, Pucciniatriticina (Pt), Pstriiformis f.sp. tritici (Pst), and Pgraminis f.sp. tritici (Pgt), cause the most common and often most significant foliar diseases of wheat. While similar in biology and life cycle, each species is uniquely adapted and specialized. The genomes of Pt and Pst were sequenced and compared to that of Pgt to identify common and distinguishing gene content, to determine gene variation among wheat rust pathogens, other rust fungi, and basidiomycetes, and to identify genes of significance for infection. Pt had the largest genome of the three, estimated at 135 Mb with expansion due to mobile elements and repeats encompassing 50.9% of contig bases; in comparison, repeats occupy 31.5% for Pst and 36.5% for Pgt We find all three genomes are highly heterozygous, with Pst [5.97 single nucleotide polymorphisms (SNPs)/kb] nearly twice the level detected in Pt (2.57 SNPs/kb) and that previously reported for Pgt Of 1358 predicted effectors in Pt, 784 were found expressed across diverse life cycle stages including the sexual stage. Comparison to related fungi highlighted the expansion of gene families involved in transcriptional regulation and nucleotide binding, protein modification, and carbohydrate degradation enzymes. Two allelic homeodomain pairs, HD1 and HD2, were identified in each dikaryotic Puccinia species along with three pheromone receptor (STE3) mating-type genes, two of which are likely representing allelic specificities. The HD proteins were active in a heterologous Ustilago maydis mating assay and host-induced gene silencing (HIGS) of the HD and STE3 alleles reduced wheat host infection.


Asunto(s)
Basidiomycota/genética , Genoma Fúngico , Análisis de Secuencia de ADN , Triticum/microbiología , Basidiomycota/patogenicidad , Genes del Tipo Sexual de los Hongos/genética , Estadios del Ciclo de Vida/genética , Anotación de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Receptores de Feromonas/genética , Triticum/genética , Triticum/crecimiento & desarrollo
13.
Nat Commun ; 7: 11187, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27041489

RESUMEN

Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPß and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.


Asunto(s)
Malaria/prevención & control , Ácido N-Acetilneuramínico/genética , Plasmodium knowlesi/patogenicidad , Zoonosis/parasitología , Animales , Eritrocitos/metabolismo , Eritrocitos/parasitología , Genoma de Protozoos , Células HEK293 , Humanos , Oxigenasas de Función Mixta/genética , Ácido N-Acetilneuramínico/biosíntesis , Ácido N-Acetilneuramínico/química , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Plasmodium knowlesi/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Zoonosis/prevención & control , Zoonosis/transmisión
14.
Nat Commun ; 7: 10740, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26899007

RESUMEN

Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.


Asunto(s)
Adaptación Biológica , Genoma Fúngico , Interacciones Huésped-Patógeno/genética , Pneumocystis carinii/genética , Animales , Pared Celular/metabolismo , Humanos , Pulmón/microbiología , Redes y Vías Metabólicas/genética , Ratones , Familia de Multigenes , Pneumocystis carinii/metabolismo , Ratas , Sintenía
15.
Proc Natl Acad Sci U S A ; 112(42): 13027-32, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26438871

RESUMEN

Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10(-3)) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (FST) = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean FST values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.


Asunto(s)
Genoma de Protozoos , Plasmodium knowlesi/genética , Adaptación Fisiológica , Animales , Genética de Población , Plasmodium knowlesi/fisiología , Polimorfismo de Nucleótido Simple
16.
Inorg Chem ; 54(11): 5148-50, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25986783

RESUMEN

ß-Diketiminate cobalt(I) precursors react with diphenyldiazomethane to give a compound that is shown by computational studies to be a diazoalkane radical anion antiferromagnetically coupled to a high-spin cobalt(II) ion. Thermolysis of this complex results in formal N-N cleavage to give a cobalt(II) ketimide complex. Experimental evaluation of the potential steps in the mechanism suggests that free azine is a likely intermediate in this reaction.

17.
Nat Commun ; 6: 7121, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25968466

RESUMEN

Obligate intracellular pathogens depend on their host for growth yet must also evade detection by host defenses. Here we investigate host adaptation in two Microsporidia, the specialist Edhazardia aedis and the generalist Vavraia culicis, pathogens of disease vector mosquitoes. Genomic analysis and deep RNA-Seq across infection time courses reveal fundamental differences between these pathogens. E. aedis retains enhanced cell surface modification and signalling capacity, upregulating protein trafficking and secretion dynamically during infection. V. culicis is less dependent on its host for basic metabolites and retains a subset of spliceosomal components, with a transcriptome broadly focused on growth and replication. Transcriptional profiling of mosquito immune responses reveals that response to infection by E. aedis differs dramatically depending on the mode of infection, and that antimicrobial defensins may play a general role in mosquito defense against Microsporidia. This analysis illuminates fundamentally different evolutionary paths and host interplay of specialist and generalist pathogens.


Asunto(s)
Aedes/microbiología , Microsporidios/clasificación , Animales , Genoma Fúngico , Interacciones Huésped-Patógeno , Larva/microbiología , Microsporidios/genética , Polimorfismo Genético , ARN de Hongos
18.
Genome Announc ; 2(4)2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24994804

RESUMEN

The Gram-positive bacterium Bacillus subtilis is widely used for studies of cellular and molecular processes. We announce the complete genomic sequences of strain AG174, our stock of the commonly used strain JH642, and strain AG1839, a derivative that contains a mutation in the replication initiation gene dnaB and a linked Tn917.

19.
Bioinformatics ; 29(19): 2387-94, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23904509

RESUMEN

MOTIVATION: Kinases of the eukaryotic protein kinase superfamily are key regulators of most aspects eukaryotic cellular behavior and have provided several drug targets including kinases dysregulated in cancers. The rapid increase in the number of genomic sequences has created an acute need to identify and classify members of this important class of enzymes efficiently and accurately. RESULTS: Kinannote produces a draft kinome and comparative analyses for a predicted proteome using a single line command, and it is currently the only tool that automatically classifies protein kinases using the controlled vocabulary of Hanks and Hunter [Hanks and Hunter (1995)]. A hidden Markov model in combination with a position-specific scoring matrix is used by Kinannote to identify kinases, which are subsequently classified using a BLAST comparison with a local version of KinBase, the curated protein kinase dataset from www.kinase.com. Kinannote was tested on the predicted proteomes from four divergent species. The average sensitivity and precision for kinome retrieval from the test species are 94.4 and 96.8%. The ability of Kinannote to classify identified kinases was also evaluated, and the average sensitivity and precision for full classification of conserved kinases are 71.5 and 82.5%, respectively. Kinannote has had a significant impact on eukaryotic genome annotation, providing protein kinase annotations for 36 genomes made public by the Broad Institute in the period spanning 2009 to the present. AVAILABILITY: Kinannote is freely available at http://sourceforge.net/projects/kinannote.


Asunto(s)
Células Eucariotas/enzimología , Proteínas Quinasas/clasificación , Algoritmos , Genoma , Internet , Posición Específica de Matrices de Puntuación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteoma/genética , Diseño de Software
20.
Nat Genet ; 45(5): 495-500, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525074

RESUMEN

Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, L. loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4-Mb genome of L. loa and that of the related filarial parasite Wuchereria bancrofti and predict 14,907 L. loa genes on the basis of microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to those of several other nematodes, we demonstrate synteny among filariae but not with nonparasitic nematodes. The L. loa genome encodes many immunologically relevant genes, as well as protein kinases targeted by drugs currently approved for use in humans. Despite lacking Wolbachia, L. loa shows no new metabolic synthesis or transport capabilities compared to other filariae. These results suggest that the role of Wolbachia in filarial biology is more subtle than previously thought and reveal marked differences between parasitic and nonparasitic nematodes.


Asunto(s)
Filariasis/genética , Filarioidea/genética , Genes de Helminto/genética , Genoma de los Helmintos , Loa/genética , Proteínas Quinasas/metabolismo , Wolbachia/genética , Animales , Brugia Malayi/genética , Filariasis/parasitología , Filarioidea/parasitología , Humanos , Datos de Secuencia Molecular , Filogenia , Simbiosis , Wuchereria bancrofti/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...