Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(22): 12757-12768, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34850165

RESUMEN

Methylation on CpG residues is one of the most important epigenetic modifications of nuclear DNA, regulating gene expression. Methylation of mitochondrial DNA (mtDNA) has been studied using whole genome bisulfite sequencing (WGBS), but recent evidence has uncovered technical issues which introduce a potential bias during methylation quantification. Here, we validate the technical concerns of WGBS, and develop and assess the accuracy of a new protocol for mtDNA nucleotide variant-specific methylation using single-molecule Oxford Nanopore Sequencing (ONS). Our approach circumvents confounders by enriching for full-length molecules over nuclear DNA. Variant calling analysis against showed that 99.5% of homoplasmic mtDNA variants can be reliably identified providing there is adequate sequencing depth. We show that some of the mtDNA methylation signal detected by ONS is due to sequence-specific false positives introduced by the technique. The residual signal was observed across several human primary and cancer cell lines and multiple human tissues, but was always below the error threshold modelled using negative controls. We conclude that there is no evidence for CpG methylation in human mtDNA, thus resolving previous controversies. Additionally, we developed a reliable protocol to study epigenetic modifications of mtDNA at single-molecule and single-base resolution, with potential applications beyond CpG methylation.


Asunto(s)
Islas de CpG , Metilación de ADN , ADN Mitocondrial/metabolismo , Secuenciación de Nanoporos/métodos , Línea Celular , Línea Celular Tumoral , ADN Mitocondrial/química , Variación Genética , Humanos , Secuenciación Completa del Genoma
2.
Nat Med ; 27(9): 1564-1575, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34426706

RESUMEN

Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis.


Asunto(s)
Biomarcadores/sangre , Enfermedades Cardiovasculares/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Edad de Inicio , Donantes de Sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología , ADN Mitocondrial/sangre , Femenino , Estudios de Seguimiento , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/patología , N-Formilmetionina/metabolismo , Proteostasis , Factores de Riesgo , Reino Unido/epidemiología
3.
BMC Cell Biol ; 17(1): 27, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27368196

RESUMEN

BACKGROUND: Vacuolar-type proton pumps help maintain acid-base homeostasis either within intracellular compartments or at specialised plasma membranes. In mammals they are made up of 13 subunits, which form two functional domains. A number of the subunits have variants that display tissue restricted expression patterns such that in specialised cell types they replace the generic subunits at some sub-cellular locations. The tissue restricted a4 subunit has previously been reported at the plasma membrane in the kidney, inner ear, olfactory epithelium and male reproductive tract. RESULTS: In this study novel locations of the a4 subunit were investigated using an Atp6v0a4 knockout mouse line in which a LacZ reporter cassette replaced part of the gene. The presence of a4 in the olfactory epithelium was further investigated and the additional presence of C2 and d2 subunits identified. The a4 subunit was found in the uterus of pregnant animals and a4 was identified along with d2 and C2 in the embryonic visceral yolk sac. In the male reproductive tract a4 was seen in the novel locations of the prostatic alveoli and the ampullary glands as well as the previously reported epididymis and vas deferens. CONCLUSIONS: The identification of novel locations for the a4 subunit and other tissue-restricted subunits increases the range of unique subunit combinations making up the proton pump. These studies suggest additional roles of the proton pump, indicating a further range of homologue-specific functions for tissue-restricted subunits.


Asunto(s)
Riñón/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Embrión de Mamíferos/metabolismo , Femenino , Genitales Femeninos/metabolismo , Genitales Masculinos/metabolismo , Masculino , Ratones Noqueados , Modelos Biológicos , Mucosa Olfatoria/metabolismo , Vías Olfatorias/metabolismo , Especificidad de Órganos , ATPasas de Translocación de Protón Vacuolares , Órgano Vomeronasal/metabolismo , beta-Galactosidasa/metabolismo
4.
Kidney Int ; 89(1): 105-112, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26398495

RESUMEN

Peroxiredoxin 6 (PRDX6) is one of the six members of the PRDX family, which have peroxidase and antioxidant activity. PRDX6 is unique, containing only one conserved cysteine residue (C47) rather than the two found in other PRDXs. A yeast two-hybrid screen found PRDX6 to be a potential binding partner of the C-terminal tail of anion exchanger 1 (AE1), a Cl(-)/HCO(3)(-) exchanger basolaterally expressed in renal α-intercalated cells. PRDX6 immunostaining in human kidney was both cytoplasmic and peripheral and colocalized with AE1. Analysis of native protein showed that it was largely monomeric, whereas expressed tagged protein was more dimeric. Two methionine oxidation sites were identified. In vitro and ex vivo pull-downs and immunoprecipitation assays confirmed interaction with AE1, but mutation of the conserved cysteine resulted in loss of interaction. Prdx6 knockout mice had a baseline acidosis with a major respiratory component and greater AE1 expression than wild-type animals. After an oral acid challenge, PRDX6 expression increased in wild-type mice, with preservation of AE1. However, AE1 expression was significantly decreased in knockout animals. Kidneys from acidified mice showed widespread proximal tubular vacuolation in wild-type but not knockout animals. Knockdown of PRDX6 by siRNA in mammalian cells reduced both total and cell membrane AE1 levels. Thus, PRDX6-AE1 interaction contributes to the maintenance of AE1 during cellular stress such as during metabolic acidosis.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Riñón/metabolismo , Riñón/patología , Peroxiredoxina VI/genética , Peroxiredoxina VI/metabolismo , Acidosis/metabolismo , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/química , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Noqueados , Peroxiredoxina VI/química
5.
J Am Soc Nephrol ; 26(2): 400-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25012180

RESUMEN

Anion exchanger-1 (AE1) mediates chloride-bicarbonate exchange across the plasma membranes of erythrocytes and, via a slightly shorter transcript, kidney epithelial cells. On an omnivorous human diet, kidney AE1 is mainly active basolaterally in α-intercalated cells of the collecting duct, where it is functionally coupled with apical proton pumps to maintain normal acid-base homeostasis. The C-terminal tail of AE1 has an important role in its polarized membrane residency. We have identified the ß1 subunit of Na(+),K(+)-ATPase (sodium pump) as a binding partner for AE1 in the human kidney. Kidney AE1 and ß1 colocalized in renal α-intercalated cells and coimmunoprecipitated (together with the catalytic α1 subunit of the sodium pump) from human kidney membrane fractions. ELISA and fluorescence titration assays confirmed that AE1 and ß1 interact directly, with a Kd value of 0.81 µM. GST-AE1 pull-down assays using human kidney membrane proteins showed that the last 11 residues of AE1 are important for ß1 binding. siRNA-induced knockdown of ß1 in cell culture resulted in a significant reduction in kidney AE1 levels at the cell membrane, whereas overexpression of kidney AE1 increased cell surface sodium pump levels. Notably, membrane staining of ß1 was reduced throughout collecting ducts of AE1-null mouse kidney, where increased fractional excretion of sodium has been reported. These data suggest a requirement of ß1 for proper kidney AE1 membrane residency, and that activities of AE1 and the sodium pump are coregulated in kidney.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/fisiología , Membrana Celular/metabolismo , Riñón/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/deficiencia , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Línea Celular , Membrana Celular/patología , Células Cultivadas , Homeostasis/fisiología , Humanos , Riñón/patología , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Unión Proteica , ARN Interferente Pequeño/farmacología , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos
6.
Dis Model Mech ; 6(2): 434-42, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23065636

RESUMEN

Mutations in the ATP6V0A4 gene lead to autosomal recessive distal renal tubular acidosis in patients, who often show sensorineural hearing impairment. A first Atp6v0a4 knockout mouse model that recapitulates the loss of H(+)-ATPase function seen in humans has been generated and recently reported (Norgett et al., 2012). Here, we present the first detailed analysis of the structure and function of the auditory system in Atp6v0a4(-/-) knockout mice. Measurements of the auditory brainstem response (ABR) showed significantly elevated thresholds in homozygous mutant mice, which indicate severe hearing impairment. Heterozygote thresholds were normal. Analysis of paint-filled inner ears and sections from E16.5 embryos revealed a marked expansion of cochlear and endolymphatic ducts in Atp6v0a4(-/-) mice. A regulatory link between Atp6v0a4, Foxi1 and Pds has been reported and we found that the endolymphatic sac of Atp6v0a4(-/-) mice expresses both Foxi1 and Pds, which suggests a downstream position of Atp6v0a4. These mutants also showed a lack of endocochlear potential, suggesting a functional defect of the stria vascularis on the lateral wall of the cochlear duct. However, the main K(+) channels involved in the generation of endocochlear potential, Kcnj10 and Kcnq1, are strongly expressed in Atp6v0a4(-/-) mice. Our results lead to a better understanding of the role of this proton pump in hearing function.


Asunto(s)
Oído Interno/enzimología , Oído Interno/patología , Endolinfa/enzimología , Pérdida Auditiva/enzimología , Pérdida Auditiva/patología , Subunidades de Proteína/deficiencia , ATPasas de Translocación de Protón/deficiencia , Animales , Animales Recién Nacidos , Proteínas de Transporte de Anión/metabolismo , Oído Interno/fisiopatología , Saco Endolinfático/patología , Saco Endolinfático/fisiopatología , Epitelio/metabolismo , Epitelio/patología , Potenciales Evocados Auditivos , Factores de Transcripción Forkhead/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Externas/ultraestructura , Pérdida Auditiva/fisiopatología , Humanos , Canal de Potasio KCNQ1/metabolismo , Ratones , Ratones Noqueados , Mutación/genética , Fenotipo , Canales de Potasio de Rectificación Interna/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Estría Vascular/metabolismo , Estría Vascular/patología , Transportadores de Sulfato , ATPasas de Translocación de Protón Vacuolares
7.
Proc Natl Acad Sci U S A ; 109(34): 13775-80, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22872862

RESUMEN

Autosomal recessive distal renal tubular acidosis (dRTA) is a severe disorder of acid-base homeostasis, often accompanied by sensorineural deafness. We and others have previously shown that mutations in the tissue-restricted a4 and B1 subunits of the H(+)-ATPase underlie this syndrome. Here, we describe an Atp6v0a4 knockout mouse, which lacks the a4 subunit. Using ß-galactosidase as a reporter for the null gene, developmental a4 expression was detected in developing bone, nose, eye, and skin, in addition to that expected in kidney and inner ear. By the time of weaning, Atp6v0a4(-/-) mice demonstrated severe metabolic acidosis, hypokalemia, and early nephrocalcinosis. Null mice were hypocitraturic, but hypercalciuria was absent. They were severely hearing-impaired, as shown by elevated auditory brainstem response thresholds and absent endocochlear potential. They died rapidly unless alkalinized. If they survived weaning with alkali supplementation, treatment could later be withdrawn, but -/- animals remained acidotic with alkaline urine. They also had an impaired sense of smell. Heterozygous animals were biochemically normal until acid-challenged, when they became more acidotic than +/+ animals. This mouse model recapitulates the loss of H(+)-ATPase function seen in human disease and can provide additional insights into dRTA and the physiology of the a4 subunit.


Asunto(s)
Acidosis Tubular Renal/genética , Acidosis Tubular Renal/fisiopatología , Pérdida Auditiva/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/fisiología , Animales , Modelos Animales de Enfermedad , Oído Interno/fisiopatología , Femenino , Regulación del Desarrollo de la Expresión Génica , Genotipo , Heterocigoto , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Noqueados , Nefrocalcinosis/genética , Fenotipo , Bombas de Protones , ATPasas de Translocación de Protón Vacuolares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...