Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 106: 510-522, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29990839

RESUMEN

BACKGROUND: RSD921, the R,R enantiomer of the kappa (k) agonist PD117,302, lacks significant activity on opioid receptors. METHODS: The pharmacological and toxicological actions were studied with reference to cardiovascular, cardiac, antiarrhythmic, toxic and local anaesthetic activity. RESULTS: In rats, dogs and baboons, RSD921 dose-dependently reduced blood pressure and heart rate. In a manner consistent with sodium channel blockade it prolonged the PR and QRS intervals of the ECG. Furthermore, in rats and NHP, RSD921 increased the threshold currents for induction of extra-systoles and ventricular fibrillation (VFt), and prolonged effective refractory period (ERP). In rats, RSD921 was protective against arrhythmias induced by electrical stimulation and coronary artery occlusion. Application of RSD921 to voltage-clamped rat cardiac myocytes blocked sodium currents. RSD921 also blocked transient (ito) and sustained (IKsus) outward potassium currents, albeit with reduced potency relative to sodium current blockade. Sodium channel blockade due to RSD921 in myocytes and isolated hearts was enhanced under ischaemic conditions (low pH and high extracellular potassium concentration). When tested on the cardiac, neuronal and skeletal muscle forms of sodium channels expressed in Xenopus laevis oocytes, RSD921 produced equipotent tonic block of sodium currents, enhanced channel block at reduced pH (6.4) and marked use-dependent block of the cardiac isoform. RSD921 had limited but quantifiable effects in subacute toxicology studies in rats and dogs. Pharmacokinetic analyses were performed in baboons. Plasma concentrations producing cardiac actions in vivo after intravenous administration of RSD921 were similar to the concentrations effective in the in vitro assays utilized. CONCLUSIONS: RSD921 primarily blocks sodium currents, and possesses antiarrhythmic and local anaesthetic activity.


Asunto(s)
Anestésicos Locales/farmacología , Antiarrítmicos/farmacología , Arritmias Cardíacas/prevención & control , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Pirroles/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Tiofenos/farmacología , Potenciales de Acción , Administración Intravenosa , Anestésicos Locales/administración & dosificación , Anestésicos Locales/farmacocinética , Anestésicos Locales/toxicidad , Animales , Antiarrítmicos/administración & dosificación , Antiarrítmicos/farmacocinética , Antiarrítmicos/toxicidad , Antihipertensivos/farmacología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Perros , Relación Dosis-Respuesta a Droga , Femenino , Cobayas , Humanos , Inyecciones Intradérmicas , Preparación de Corazón Aislado , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Conducción Nerviosa/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Papio , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/administración & dosificación , Bloqueadores de los Canales de Sodio/farmacocinética , Bloqueadores de los Canales de Sodio/toxicidad , Canales de Sodio/metabolismo , Factores de Tiempo , Xenopus laevis
2.
Neuroscience ; 268: 297-308, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24662849

RESUMEN

Tetrodotoxin-sensitive persistent sodium currents, INaP, that activate at subthreshold voltages, have been detected in numerous vertebrate and invertebrate neurons. These currents are believed to be critical for regulating neuronal excitability. However, the molecular mechanism underlying INaP is controversial. In this study, we identified an INaP with a broad range of voltage dependence, from -60mV to 20mV, in a Drosophila sodium channel variant expressed in Xenopus oocytes. Mutational analysis revealed that two variant-specific amino acid changes, I260T in the S4-S5 linker of domain I (ILS4-S5) and A1731V in the voltage sensor S4 of domain IV (IVS4), contribute to the INaP. I260T is critical for the portion of INaP at hyperpolarized potentials. The T260-mediated INaP is likely the result of window currents flowing in the voltage range where the activation and inactivation curves overlap. A1731V is responsible for impaired inactivation and contributes to the portion of INaP at depolarized potentials. Furthermore, A1731V causes enhanced activity of two site-3 toxins which induce persistent currents by inhibiting the outward movement of IVS4, suggesting that A1731V inhibits the outward movement of IVS4. These results provided molecular evidence for the involvement of distinct mechanisms in the generation of INaP: T260 contributes to INaP via enhancement of the window current, whereas V1731 impairs fast inactivation probably by inhibiting the outward movement of IVS4.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Potenciales de la Membrana/fisiología , Canales de Sodio/genética , Canales de Sodio/metabolismo , Animales , Proteínas de Drosophila/química , Drosophila melanogaster , Estimulación Eléctrica , Técnicas de Transferencia de Gen , Variación Genética , Potenciales de la Membrana/efectos de los fármacos , Mutagénesis Sitio-Dirigida , Neurotoxinas/farmacología , Técnicas de Placa-Clamp , Venenos de Escorpión/farmacología , Canales de Sodio/química , Xenopus
3.
J Neurosci ; 24(44): 10022-34, 2004 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-15525788

RESUMEN

A mutation in the sodium channel SCN1A was identified in a small Italian family with dominantly inherited generalized epilepsy with febrile seizures plus (GEFS+). The mutation, D1866Y, alters an evolutionarily conserved aspartate residue in the C-terminal cytoplasmic domain of the sodium channel alpha subunit. The mutation decreased modulation of the alpha subunit by beta1, which normally causes a negative shift in the voltage dependence of inactivation in oocytes. There was less of a shift with the mutant channel, resulting in a 10 mV difference between the wild-type and mutant channels in the presence of beta1. This shift increased the magnitude of the window current, which resulted in more persistent current during a voltage ramp. Computational analysis suggests that neurons expressing the mutant channels will fire an action potential with a shorter onset delay in response to a threshold current injection, and that they will fire multiple action potentials with a shorter interspike interval at a higher input stimulus. These results suggest a causal relationship between a positive shift in the voltage dependence of sodium channel inactivation and spontaneous seizure activity. Direct interaction between the cytoplasmic C-terminal domain of the wild-type alpha subunit with the beta1 or beta3 subunit was first demonstrated by yeast two-hybrid analysis. The SCN1A peptide K1846-R1886 is sufficient for beta subunit interaction. Coimmunoprecipitation from transfected mammalian cells confirmed the interaction between the C-terminal domains of the alpha and beta1 subunits. The D1866Y mutation weakens this interaction, demonstrating a novel molecular mechanism leading to seizure susceptibility.


Asunto(s)
Epilepsia Generalizada/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Canales de Sodio/genética , Canales de Sodio/fisiología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Secuencia de Aminoácidos , Animales , Cricetinae , Cricetulus , Citoplasma , Epilepsia Generalizada/complicaciones , Epilepsia Generalizada/fisiopatología , Femenino , Humanos , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Cinética , Masculino , Modelos Neurológicos , Datos de Secuencia Molecular , Mutación , Canal de Sodio Activado por Voltaje NAV1.1 , Neuronas/fisiología , Oocitos , Estructura Terciaria de Proteína , Proteínas Recombinantes , Saccharomyces cerevisiae , Convulsiones Febriles/complicaciones , Convulsiones Febriles/genética , Convulsiones Febriles/fisiopatología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje , Xenopus laevis
4.
Biophys J ; 87(6): 3862-72, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15465873

RESUMEN

Nav1.2 and Nav1.6 are two voltage-gated sodium channel isoforms that are abundant in the adult central nervous system. These channels are expressed in different cells and localized in different neuronal regions, which may reflect functional specialization. To examine this possibility, we compared the properties of Nav1.2 and Nav1.6 in response to a rapid series of repetitive depolarizations. Currents through Nav1.6 coexpressed with beta1 demonstrated use-dependent potentiation during a rapid train of depolarizations. This potentiation was in contrast to the use-dependent decrease in current for Nav1.2 with beta1. The voltage dependence of potentiation correlated with the voltage dependence of activation, and it still occurred when fast inactivation was removed by mutation. Rapid stimulation accelerated a slow phase of activation in the Nav1.6 channel that had fast inactivation removed, resulting in faster channel activation. Although the Nav1.2 channel with fast inactivation removed also demonstrated slightly faster activation, that channel showed very pronounced slow inactivation compared to Nav1.6. These results indicate that potentiation of Nav1.6 sodium currents results from faster channel activation, and that this effect is masked by slow inactivation in Nav1.2. The data suggest that Nav1.6 might be more resistant to inactivation, which might be helpful for high-frequency firing at nodes of Ranvier compared to Nav1.2.


Asunto(s)
Potenciales de Acción/fisiología , Estimulación Eléctrica/métodos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Oocitos/fisiología , Canales de Sodio/fisiología , Adaptación Fisiológica/fisiología , Animales , Células Cultivadas , Mutagénesis Sitio-Dirigida , Canal de Sodio Activado por Voltaje NAV1.2 , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Xenopus laevis
5.
Neuroscience ; 116(1): 37-48, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12535936

RESUMEN

Nine mutations that cause generalized epilepsy with febrile seizures plus have been identified in the SCN1A gene encoding the alpha subunit of the Na(v)1.1 voltage-gated sodium channel. The functional properties of two of these mutations (T875M and R1648H) have previously been described. T875M was shown to enhance slow inactivation, while R1648H dramatically accelerated recovery from inactivation. In this report, we have cloned, expressed and characterized the functional effects of a third generalized epilepsy with febrile seizures plus mutation, W1204R (Am J Hum Genet 68 (2001) 866). The mutation was cloned into the orthologous rat channel, rNa(v)1.1, and at the same time a single base pair insertion at base 120 in the original rNa(v)1.1 clone was corrected. The level of expression of the corrected wild-type rNa(v)1.1 was approximately 1000-fold higher than that of the original clone and comparable to that achieved with other neuronal sodium channels expressed in Xenopus oocytes. The properties of the W1204R mutant in the corrected rNa(v)1.1 were determined in the absence and presence of the beta1 subunit in Xenopus oocytes. The W1204R mutation resulted in approximately 11 mV hyperpolarized shifts in the voltage-dependence of activation and steady-state inactivation when expressed as an alpha subunit alone. When the channels were coexpressed with the beta1 subunit, the hyperpolarized shifts were still present but smaller, approximately 5 mV in magnitude. All other properties that we examined were comparable for the mutant and wild-type channels. The negative shift in activation would increase channel excitability, whereas the negative shift in inactivation would decrease excitability. The negative shifts in both properties also shifted the window current, which is the voltage region in which sodium channels can continue to open because some percentage of channels are activated and not all of the channels are inactivated. The shift in window current for the W1204R mutation could result in hyperexcitability because the neuron's potential is more likely to reach the more negative range. These results demonstrate that a third SCN1A mutation that causes generalized epilepsy with febrile seizures plus 2 alters the properties of the sodium channel in a different manner than the previous two mutations that were studied. The diversity in functional effects for these three mutations indicates that a similar clinical phenotype can result from very different underlying sodium channel abnormalities.


Asunto(s)
Epilepsia Generalizada/fisiopatología , Mutación , Convulsiones Febriles/fisiopatología , Canales de Sodio/genética , Animales , Arginina/genética , Electrofisiología , Epilepsia Generalizada/genética , Oocitos , Convulsiones Febriles/genética , Triptófano/genética , Xenopus
6.
Insect Biochem Mol Biol ; 32(4): 445-54, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11886779

RESUMEN

Pyrethroid insecticides alter the normal gating of voltage-gated sodium channels in the nervous system. Three sodium channel mutations (E434K, C764R, L993F) were recently identified in pyrethroid resistant German cockroach populations. In this report, we show that the L993F mutation decreased sodium channel sensitivity to the pyrethroid, deltamethrin, by five-fold in Xenopus oocytes. In contrast, neither E434K nor C764R alone decreased channel sensitivity to deltamethrin. However, E434K or C764R combined with L993F reduced deltamethrin sensitivity by 100-fold. Furthermore, concomitant presence of all three mutations (KRF) reduced channel sensitivity to deltamethrin by 500-fold. None of the mutations significantly affected channel gating. However, sodium current amplitudes from the mutant sodium channel carrying either E434K or C764R alone were much reduced compared to those of the wild-type channel or the channel carrying the double or triple mutations (KF, RF and KRF). These results indicated that evolution of sodium channel insensitivity in the German cockroach is achieved by sequential selection of a primary mutation L993F and two secondary mutations E434K and C764R, and concomitant presence of all three mutations dramatically reduced sodium channel sensitivity to deltamethrin.


Asunto(s)
Blattellidae/metabolismo , Insecticidas/farmacología , Piretrinas/farmacología , Canales de Sodio/genética , Animales , Proteínas de Drosophila , Drosophila melanogaster/genética , Expresión Génica , Genes de Insecto , Activación del Canal Iónico , Mutagénesis Sitio-Dirigida , Nitrilos , Oocitos , Canales de Sodio/efectos de los fármacos , Xenopus
7.
J Neurosci ; 21(19): 7481-90, 2001 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-11567038

RESUMEN

Two mutations that cause generalized epilepsy with febrile seizures plus (GEFS+) have been identified previously in the SCN1A gene encoding the alpha subunit of the Na(v)1.1 voltage-gated sodium channel (Escayg et al., 2000). Both mutations change conserved residues in putative voltage-sensing S4 segments, T875M in domain II and R1648H in domain IV. Each mutation was cloned into the orthologous rat channel rNa(v)1.1, and the properties of the mutant channels were determined in the absence and presence of the beta1 subunit in Xenopus oocytes. Neither mutation significantly altered the voltage dependence of either activation or inactivation in the presence of the beta1 subunit. The most prominent effect of the T875M mutation was to enhance slow inactivation in the presence of beta1, with small effects on the kinetics of recovery from inactivation and use-dependent activity of the channel in both the presence and absence of the beta1 subunit. The most prominent effects of the R1648H mutation were to accelerate recovery from inactivation and decrease the use dependence of channel activity with and without the beta1 subunit. The DIV mutation would cause a phenotype of sodium channel hyperexcitability, whereas the DII mutation would cause a phenotype of sodium channel hypoexcitability, suggesting that either an increase or decrease in sodium channel activity can result in seizures.


Asunto(s)
Epilepsia Generalizada/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Convulsiones Febriles/genética , Canales de Sodio/genética , Canales de Sodio/metabolismo , Sustitución de Aminoácidos , Animales , Células Cultivadas , Epilepsia Generalizada/complicaciones , Expresión Génica , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Mutación , Canal de Sodio Activado por Voltaje NAV1.1 , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fenotipo , Subunidades de Proteína , Ratas , Convulsiones Febriles/complicaciones , Sodio/metabolismo , Relación Estructura-Actividad , Síndrome , Tetrodotoxina/farmacología , Transfección
8.
Annu Rev Physiol ; 63: 871-94, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11181979

RESUMEN

A variety of isoforms of mammalian voltage-gated sodium channels have been described. Ten genes encoding sodium channel alpha subunits have been identified, and nine of those isoforms have been functionally expressed in exogenous systems. The alpha subunit is associated with accessory beta subunits in some tissues, and three genes encoding different beta subunits have been identified. The alpha subunit isoforms have distinct patterns of development and localization in the nervous system, skeletal and cardiac muscle. In addition, many of the isoforms demonstrate subtle differences in their functional properties. However, there are no clear subfamilies of the channels, unlike the situation with potassium and calcium channels. The subtle differences in the functional properties of the sodium channel isoforms result in unique conductances in specific cell types, which have important physiological effects for the organism. Small alterations in the electrophysiological properties of the channel resulting from mutations in specific isoforms cause human diseases such as periodic paralysis, long QT syndrome, and epilepsy.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Neuronas/metabolismo , Canales de Sodio/genética , Canales de Sodio/metabolismo , Animales , Evolución Molecular , Humanos , Filogenia
9.
Neuroscience ; 102(2): 307-17, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11166117

RESUMEN

The GAL879-881QQQ mutation in the cytoplasmic S4-S5 linker of domain 2 of the rat brain IIA sodium channel (Na(v)1.2) results in slowed inactivation and increased persistent current when expressed in Xenopus oocytes. The neuron-specific enolase promoter was used to direct in vivo expression of the mutated channel in transgenic mice. Three transgenic lines exhibited seizures, and line Q54 was characterized in detail. The seizures in these mice began at two months of age and were accompanied by behavioral arrest and stereotyped repetitive behaviors. Continuous electroencephalogram monitoring detected focal seizure activity in the hippocampus, which in some instances generalized to involve the cortex. Hippocampal CA1 neurons isolated from presymptomatic Q54 mice exhibited increased persistent sodium current which may underlie hyperexcitability in the hippocampus. During the progression of the disorder there was extensive cell loss and gliosis within the hippocampus in areas CA1, CA2, CA3 and the hilus. The lifespan of Q54 mice was shortened and only 25% of the mice survived beyond six months of age. Four independent transgenic lines expressing the wild-type sodium channel were examined and did not exhibit any abnormalities. The transgenic Q54 mice provide a genetic model that will be useful for testing the effect of pharmacological intervention on progression of seizures caused by sodium channel dysfunction. The human ortholog, SCN2A, is a candidate gene for seizure disorders mapped to chromosome 2q22-24.


Asunto(s)
Epilepsia/genética , Epilepsia/fisiopatología , Mutación , Proteínas del Tejido Nervioso/genética , Canales de Sodio/genética , Conducta Estereotipada , Animales , Conducta Animal , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Electroencefalografía , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.2 , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oocitos/citología , Oocitos/metabolismo , Especificidad de Órganos , Técnicas de Placa-Clamp , Sodio/metabolismo , Canales de Sodio/metabolismo , Tasa de Supervivencia , Transfección , Transgenes , Xenopus
10.
Exp Clin Cardiol ; 6(2): 61-71, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-20428265

RESUMEN

OBJECTIVES: To determine whether the kappa opioid receptor agonist U-50,488H, a benzacetamide derivative of the cyclo-hexane-1,2-diamine analgesics, may be a useful molecular probe to define the structural requirements of this class of drugs for cardiac sodium channel blockade. ANIMALS AND METHODS: The electrophysiological effects of U-50,488H were compared with those of lidocaine, a clinically used class Ib antiarrhythmic agent, in rat heart sodium currents expressed in Xenopus laevis oocytes by using two-electrode voltage clamp. RESULTS: Both U-50,488H and lidocaine produced a concentration-dependent tonic block of sodium current, but U-50,488H was approximately fourfold more potent than lidocaine. Both drugs produced a hyperpolarizing shift in the voltage dependence of sodium channel inactivation and both delayed recovery from inactivation. Both drugs exhibited use-dependent block, but U-50,488H showed a 1.8-fold increase in potency compared with lidocaine at a high frequency of stimulation (30 Hz). CONCLUSIONS: The more potent tonic and use-dependent block of cardiac sodium channels by U-50,488H suggests that structural features of this molecule may provide it with a greater ability to block the channel. An understanding of these structural features may provide information needed in the development of novel arylacetamide-based antiarrhythmic drugs and insight into possible mechanisms describing channel block, resulting in a highly efficacious antiarrhythmic action in the heart.

13.
Gen Pharmacol ; 34(6): 417-27, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11483291

RESUMEN

Spiradoline, an arylacetamide kappa (kappa) opioid receptor agonist, produced a potent tonic block of rat neuronal (EC(50)= 34+/-5 microM) and heart (EC(50)= 183+/-13 microM) sodium channels and also blocked IFMQ3 mutant neuronal sodium channels (EC(50)= 130+/-34 microM) that lack fast inactivation when expressed in Xenopus oocytes. Spiradoline produced a hyperpolarizing shift in the voltage-dependence of sodium channel inactivation and exhibited a marked frequency-dependent component to blockade of sodium channels. The onset of open channel block of the IFMQ3 channel by spiradoline was best fit with a first-order blocking scheme, yielding an affinity constant of 116 +/- 33 microM. Thus, spiradoline blocks sodium channels by interacting with the major states of the channel which could result in local anesthetic action in nerves and antiarrhythmic action in the heart.


Asunto(s)
Antiarrítmicos/agonistas , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Pirrolidinas/agonistas , Receptores Opioides kappa/agonistas , Bloqueadores de los Canales de Sodio , Canales de Sodio/biosíntesis , Xenopus/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Femenino , Corazón/efectos de los fármacos , Modelos Animales , Técnicas de Placa-Clamp/métodos , Ratas
14.
Am J Physiol Cell Physiol ; 278(4): C638-45, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10751312

RESUMEN

Functional modulation of voltage-gated sodium channels affects the electrical excitability of neurons. Protein kinase A (PKA) can decrease sodium currents by phosphorylation at consensus sites in the cytoplasmic I-II linker. Once the sites are phosphorylated, however, additional PKA activity can increase sodium currents by an unknown mechanism. When the PKA sites were eliminated by substitutions of alanine for serine, peak sodium current amplitudes were increased by 20-80% when PKA was activated in Xenopus oocytes either by stimulation of a coexpressed beta(2)-adrenergic receptor or by perfusion with reagents that increase cAMP. Potentiation required the I-II linker of the brain channel, in that a chimeric channel in which the brain linker was replaced with the comparable linker from the skeletal muscle channel did not demonstrate potentiation. Using a series of chimeric and deleted channels, we demonstrate that potentiation is not dependent on any single region of the linker and that the extent of potentiation varies depending on the total length and the residues throughout the linker. These data are consistent with the hypothesis that potentiation by PKA is an indirect process involving phosphorylation of an accessory protein that interacts with the I-II linker of the sodium channel.


Asunto(s)
Encéfalo/metabolismo , Secuencia de Consenso/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Oocitos/metabolismo , Canales de Sodio/fisiología , Animales , Quimera , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Sinergismo Farmacológico , Conductividad Eléctrica , Activación Enzimática , Eliminación de Gen , Músculos/metabolismo , Ratas , Canales de Sodio/genética , Xenopus
15.
Neuroreport ; 10(14): 3027-31, 1999 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-10549817

RESUMEN

A mutation of alanine to threonine in the III S4-S5 linker of the mouse Scn8a sodium channel has previously been identified as causing the ataxia in med(jo) mice. The electrophysiological effects of this mutation in Scn8a sodium channels were characterized in Xenopus oocytes. The med(jo) mutation caused a 10 mV positive shift in the voltage dependence of activation, without any significant changes in the kinetics of either inactivation or recovery from inactivation. The shift in the voltage dependence of activation observed for the mutant channel would reduce the spontaneous activity of Purkinje cells and lead to a decrease in output from the cerebellum, which is consistent with the phenotype of cerebellar ataxia observed in med(jo) mice.


Asunto(s)
Ataxia/genética , Proteínas del Tejido Nervioso/genética , Canales de Sodio/genética , Alanina/metabolismo , Sustitución de Aminoácidos , Animales , Electrofisiología , Cinética , Ratones , Mutación/fisiología , Canal de Sodio Activado por Voltaje NAV1.6 , Oocitos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Treonina/metabolismo , Xenopus
16.
Ann N Y Acad Sci ; 868: 38-50, 1999 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-10414280

RESUMEN

A variety of different isoforms of mammalian voltage-gated sodium channels have been identified. These channels can be classified into three different types. Eight type 1 isoforms have been identified in the CNS, PNS, skeletal muscle, and heart. All of these channels have been expressed in exogenous systems, and all of the genes have been mapped. Three type 2 isoforms have been identified in heart, uterus, and muscle. These channels diverge from the type 1 channels in critical regions, and have not been functionally expressed, so their significance is unknown. A single isoform identified in the PNS may represent a third class of channels, in that it diverges from both type 1 and 2 channels. The type 3 channel has not been functionally expressed.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Sodio/genética , Animales , Sistema Nervioso Central/metabolismo , Humanos , Mamíferos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Sistema Nervioso Periférico/metabolismo , Canales de Sodio/clasificación
17.
Br J Pharmacol ; 127(1): 9-18, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10369450

RESUMEN

RSD 921 is a novel, structurally unique, class I Na+ channel blocking drug under development as a local anaesthetic agent and possibly for the treatment of cardiac arrhythmias. The effects of RSD 921 on wild-type heart, skeletal muscle, neuronal and non-inactivating IFMQ3 mutant neuronal Na+ channels expressed in Xenopus laevis oocytes were examined using a two-electrode voltage clamp. RSD 921 produced similarly potent tonic block of all three wild-type channel isoforms, with EC50 values between 35 and 47 microM, whereas the EC50 for block of the IFMQ3 mutant channel was 110+5.5 microM. Block of Na+ channels by RSD 921 was concentration and use-dependent, with marked frequency-dependent block of heart channels and mild frequency-dependent block of skeletal muscle, wild-type neuronal and IFMQ3 mutant channels. RSD 921 produced a minimal hyperpolarizing shift in the steady-state voltage-dependence of inactivation of all three wild-type channel isoforms. Open channel block of the IFMQ3 mutant channel was best fit with a first order blocking scheme with k(on) equal to 0.11+/-0.012x10(6) M(-1) s(-1) and k(off) equal to 12.5+/-2.5 s(-1), resulting in KD of 117+/-31 microM. Recovery from open channel block occurred with a time constant of 14+/-2.7 s(-1). These results suggest that RSD 921 preferentially interacts with the open state of the Na+ channel, and that the drug may produce potent local anaesthetic or anti-arrhythmic action under conditions of shortened action potentials, such as during anoxia or ischaemia.


Asunto(s)
Antiarrítmicos/farmacología , Pirroles/farmacología , Bloqueadores de los Canales de Sodio , Tiofenos/farmacología , Animales , Estimulación Eléctrica , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Músculo Esquelético/química , Mutación , Miocardio/química , Neuronas/química , Oocitos/metabolismo , Técnicas de Placa-Clamp , ARN/biosíntesis , Ratas , Canales de Sodio/química , Canales de Sodio/genética , Canales de Sodio/metabolismo , Transcripción Genética , Xenopus laevis
20.
J Neurosci ; 18(16): 6093-102, 1998 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-9698304

RESUMEN

The mouse Scn8a sodium channel and its ortholog Na6 in the rat are abundantly expressed in the CNS. Mutations in mouse Scn8a result in neurological disorders, including paralysis, ataxia, and dystonia. In addition, Scn8a has been observed to mediate unique persistent and resurgent currents in cerebellar Purkinje cells (Raman et al., 1997). To examine the functional characteristics of this channel, we constructed a full-length cDNA clone encoding the mouse Scn8a sodium channel and expressed it in Xenopus oocytes. The electrophysiological properties of the Scn8a channels were compared with those of the Rat1 and Rat2 sodium channels. Scn8a channels were sensitive to tetrodotoxin at a level comparable to that of Rat1 or Rat2. Scn8a channels inactivated more rapidly and showed differences in their voltage-dependent properties compared with Rat1 and Rat2 when only the alpha subunits were expressed. Coexpression of the beta1 and beta2 subunits modulated the properties of Scn8a channels, but to a lesser extent than for the Rat1 or Rat2 channels. Therefore, all three channels showed similar voltage dependence and inactivation kinetics in the presence of the beta subunits. Scn8a channels coexpressed with the beta subunits exhibited a persistent current that became larger with increasing depolarization, which was not observed for either Rat1 or Rat2 channels. The unique persistent current observed for Scn8a channels is consistent with the hypothesis that this channel is responsible for distinct sodium conductances underlying repetitive firing of action potentials in Purkinje neurons.


Asunto(s)
Proteínas del Tejido Nervioso , Canales de Sodio/fisiología , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN Complementario/genética , Conductividad Eléctrica , Exorribonucleasas/fisiología , Femenino , Cinética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.6 , Oocitos/metabolismo , Canales de Sodio/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA