Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 46(11): 2011-2020, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33658654

RESUMEN

Patients with SCN8A epileptic encephalopathy exhibit a range of clinical features, including multiple seizure types, movement disorders, and behavioral abnormalities, such as developmental delay, mild-to-severe intellectual disability, and autism. Recently, the de novo heterozygous SCN8A R1620L mutation was identified in an individual with autism, intellectual disability, and behavioral seizures without accompanying electrographic seizure activity. To date, the effects of SCN8A mutations that are primarily associated with behavioral abnormalities have not been studied in a mouse model. To better understand the phenotypic and functional consequences of the R1620L mutation, we used CRISPR/Cas9 technology to generate mice expressing the corresponding SCN8A amino acid substitution. Homozygous mutants exhibit tremors and a maximum lifespan of 22 days, while heterozygous mutants (RL/+) exhibit autistic-like behaviors, such as hyperactivity and learning and social deficits, increased seizure susceptibility, and spontaneous seizures. Current clamp analyses revealed a reduced threshold for firing action potentials in heterozygous CA3 pyramidal neurons and reduced firing frequency, suggesting that the R1620L mutation has both gain- and loss-of-function effects. In vivo calcium imaging using miniscopes in freely moving RL/+ mutants showed hyperexcitability of cortical excitatory neurons that is likely to increase seizure susceptibility. Finally, we found that oxcarbazepine and Huperzine A, a sodium channel blocker and reversible acetylcholinesterase inhibitor, respectively, were capable of conferring robust protection against induced seizures in RL/+ mutants. This mouse line will provide the opportunity to better understand the range of clinical phenotypes associated with SCN8A mutations and to develop new therapeutic approaches.


Asunto(s)
Trastorno Autístico , Epilepsia , Animales , Humanos , Ratones , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas , Convulsiones/genética
2.
Eur J Pharmacol ; 844: 241-252, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30571955

RESUMEN

A series of amino-2-cyclohexyl ester derivatives were studied for their ion channel blocking and antiarrhythmic actions in the rat and a structure-activity analysis was conducted. The compounds are similar in chemical structure except for ionizable amine groups (pK values 6.1-8.9) and the positional arrangements of aromatic naphthyl moieties. Ventricular arrhythmias were produced in rats by coronary-artery occlusion or electrical stimulation. The electrophysiological effects of these compounds on rat heart sodium channels (Nav1.5) expressed in Xenopus laevis oocytes and transient outward potassium currents (Kv4.3) from isolated rat ventricular myocytes were examined. The compounds reduced the incidence of ischemia-related arrhythmias and increased current threshold for induction of ventricular fibrillo-flutter (VFt) dose-dependently. As pK increased compounds showed a diminished effectiveness against ischemia-induced arrhythmias, and were less selective for ischemia- versus electrically-induced arrhythmias. Where tested, compounds produced a concentration-dependent tonic block of Nav1.5 channels. An increased potency for inhibition of Nav1.5 occurred when the external pH (pHo) was reduced to 6.5. Some compounds inhibited Kv4.3 in a pH-independent manner. Overall, the differences in antiarrhythmic and ion channel blocking properties in this series of compounds can be explained by differences in chemical structure. Antiarrhythmic activity for the amino-2-cyclohexyl ester derivatives is likely a function of mixed ion channel blockade in ischemic myocardium. These studies show that drug inhibition of Nav1.5 occurred at lower concentrations than Kv4.3 and was more sensitive to changes in the ionizable amine groups rather than on positional arrangements of the naphthyl constituents. These results offer insight into antiarrhythmic mechanisms of drug-ion channel interactions.


Asunto(s)
Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Bloqueadores de los Canales de Potasio/uso terapéutico , Bloqueadores de los Canales de Sodio/uso terapéutico , Animales , Antiarrítmicos/química , Antiarrítmicos/farmacología , Ésteres/química , Ésteres/farmacología , Ésteres/uso terapéutico , Corazón/efectos de los fármacos , Corazón/fisiología , Masculino , Isquemia Miocárdica/complicaciones , Oocitos/fisiología , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/fisiología , Relación Estructura-Actividad , Xenopus laevis
3.
Exp Neurol ; 293: 159-171, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28373025

RESUMEN

Mutations in the voltage-gated sodium channel (VGSC) gene SCN1A, encoding the Nav1.1 channel, are responsible for a number of epilepsy disorders including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS). Patients with SCN1A mutations often experience prolonged early-life febrile seizures (FSs), raising the possibility that these events may influence epileptogenesis and lead to more severe adult phenotypes. To test this hypothesis, we subjected 21-23-day-old mice expressing the human SCN1A GEFS+ mutation R1648H to prolonged hyperthermia, and then examined seizure and behavioral phenotypes during adulthood. We found that early-life FSs resulted in lower latencies to induced seizures, increased severity of spontaneous seizures, hyperactivity, and impairments in social behavior and recognition memory during adulthood. Biophysical analysis of brain slice preparations revealed an increase in epileptiform activity in CA3 pyramidal neurons along with increased action potential firing, providing a mechanistic basis for the observed worsening of adult phenotypes. These findings demonstrate the long-term negative impact of early-life FSs on disease outcomes. This has important implications for the clinical management of this patient population and highlights the need for therapeutic interventions that could ameliorate disease progression.


Asunto(s)
Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones Febriles/complicaciones , Convulsiones Febriles/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Factores de Edad , Animales , Animales Recién Nacidos , Arginina/genética , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Femenino , Flurotilo/toxicidad , Hipocampo/patología , Histidina/genética , Humanos , Hipertermia Inducida/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Convulsiones Febriles/etiología , Convulsiones Febriles/patología
4.
Neuron ; 93(5): 1165-1179.e6, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28238546

RESUMEN

Voltage-gated sodium channel (VGSC) mutations cause severe epilepsies marked by intermittent, pathological hypersynchronous brain states. Here we present two mechanisms that help to explain how mutations in one VGSC gene, Scn8a, contribute to two distinct seizure phenotypes: (1) hypoexcitation of cortical circuits leading to convulsive seizure resistance, and (2) hyperexcitation of thalamocortical circuits leading to non-convulsive absence epilepsy. We found that loss of Scn8a leads to altered RT cell intrinsic excitability and a failure in recurrent RT synaptic inhibition. We propose that these deficits cooperate to enhance thalamocortical network synchrony and generate pathological oscillations. To our knowledge, this finding is the first clear demonstration of a pathological state tied to disruption of the RT-RT synapse. Our observation that loss of a single gene in the thalamus of an adult wild-type animal is sufficient to cause spike-wave discharges is striking and represents an example of absence epilepsy of thalamic origin.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Red Nerviosa/metabolismo , Sinapsis/metabolismo , Tálamo/metabolismo , Animales , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/metabolismo , Ratones , Fenotipo , Convulsiones/genética , Convulsiones/metabolismo
5.
Epilepsia ; 57(7): 1027-35, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27270488

RESUMEN

On April 21, 2015, the first SCN8A Encephalopathy Research Group convened in Washington, DC, to assess current research into clinical and pathogenic features of the disorder and prepare an agenda for future research collaborations. The group comprised clinical and basic scientists and representatives of patient advocacy groups. SCN8A encephalopathy is a rare disorder caused by de novo missense mutations of the sodium channel gene SCN8A, which encodes the neuronal sodium channel Nav 1.6. Since the initial description in 2012, approximately 140 affected individuals have been reported in publications or by SCN8A family groups. As a result, an understanding of the severe impact of SCN8A mutations is beginning to emerge. Defining a genetic epilepsy syndrome goes beyond identification of molecular etiology. Topics discussed at this meeting included (1) comparison between mutations of SCN8A and the SCN1A mutations in Dravet syndrome, (2) biophysical properties of the Nav 1.6 channel, (3) electrophysiologic effects of patient mutations on channel properties, (4) cell and animal models of SCN8A encephalopathy, (5) drug screening strategies, (6) the phenotypic spectrum of SCN8A encephalopathy, and (7) efforts to develop a bioregistry. A panel discussion of gaps in bioregistry, biobanking, and clinical outcomes data was followed by a planning session for improved integration of clinical and basic science research. Although SCN8A encephalopathy was identified only recently, there has been rapid progress in functional analysis and phenotypic classification. The focus is now shifting from identification of the underlying molecular cause to the development of strategies for drug screening and prioritized patient care.


Asunto(s)
Encefalopatías/genética , Epilepsia/etiología , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Simbiosis/genética , Animales , Anticonvulsivantes/uso terapéutico , Encefalopatías/complicaciones , Encefalopatías/tratamiento farmacológico , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Epilepsia/tratamiento farmacológico , Humanos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Fenotipo
6.
Exp Neurol ; 275 Pt 1: 46-58, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26410685

RESUMEN

Understanding the role of SCN8A in epilepsy and behavior is critical in light of recently identified human SCN8A epilepsy mutations. We have previously demonstrated that Scn8a(med) and Scn8a(med-jo) mice carrying mutations in the Scn8a gene display increased resistance to flurothyl and kainic acid-induced seizures; however, they also exhibit spontaneous absence seizures. To further investigate the relationship between altered SCN8A function and epilepsy, we introduced the SCN1A-R1648H mutation, identified in a family with generalized epilepsy with febrile seizures plus (GEFS+), into the corresponding position (R1627H) of the mouse Scn8a gene. Heterozygous R1627H mice exhibited increased resistance to some forms of pharmacologically and electrically induced seizures and the mutant Scn8a allele ameliorated the phenotype of Scn1a-R1648H mutants. Hippocampal slices from heterozygous R1627H mice displayed decreased bursting behavior compared to wild-type littermates. Paradoxically, at the homozygous level, R1627H mice did not display increased seizure resistance and were susceptible to audiogenic seizures. We furthermore observed increased hippocampal pyramidal cell excitability in heterozygous and homozygous Scn8a-R1627H mutants, and decreased interneuron excitability in heterozygous Scn8a-R1627H mutants. These results expand the phenotypes associated with disruption of the Scn8a gene and demonstrate that an Scn8a mutation can both confer seizure protection and increase seizure susceptibility.


Asunto(s)
Hipocampo/fisiopatología , Interneuronas/metabolismo , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Células Piramidales/metabolismo , Convulsiones/genética , Estimulación Acústica , Animales , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatología , Susceptibilidad a Enfermedades , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología
7.
Epilepsy Curr ; 15(1): 50-1, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25678893
8.
Neurotherapeutics ; 12(1): 234-49, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25256961

RESUMEN

Inhibitors of voltage-gated sodium channels (Na(v)) have been used as anticonvulsants since the 1940s, while potassium channel activators have only been investigated more recently. We here describe the discovery of 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a thioanalog of riluzole, as a potent, novel anticonvulsant, which combines the two mechanisms. SKA-19 is a use-dependent NaV channel blocker and an activator of small-conductance Ca(2+)-activated K(+) channels. SKA-19 reduces action potential firing and increases medium afterhyperpolarization in CA1 pyramidal neurons in hippocampal slices. SKA-19 is orally bioavailable and shows activity in a broad range of rodent seizure models. SKA-19 protects against maximal electroshock-induced seizures in both rats (ED50 1.6 mg/kg i.p.; 2.3 mg/kg p.o.) and mice (ED50 4.3 mg/kg p.o.), and is also effective in the 6-Hz model in mice (ED50 12.2 mg/kg), Frings audiogenic seizure-susceptible mice (ED50 2.2 mg/kg), and the hippocampal kindled rat model of complex partial seizures (ED50 5.5 mg/kg). Toxicity tests for abnormal neurological status revealed a therapeutic index (TD50/ED50) of 6-9 following intraperitoneal and of 33 following oral administration. SKA-19 further reduced acute pain in the formalin pain model and raised allodynic threshold in a sciatic nerve ligation model. The anticonvulsant profile of SKA-19 is comparable to riluzole, which similarly affects Na(V) and KCa2 channels, except that SKA-19 has a ~4-fold greater duration of action owing to more prolonged brain levels. Based on these findings we propose that compounds combining KCa2 channel-activating and Na(v) channel-blocking activity exert broad-spectrum anticonvulsant and analgesic effects.


Asunto(s)
Anticonvulsivantes/farmacología , Riluzol/análogos & derivados , Riluzol/farmacología , Convulsiones/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Umbral del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Canales de Sodio Activados por Voltaje/metabolismo
9.
Neurobiol Dis ; 68: 16-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24704313

RESUMEN

SCN1A mutations are the main cause of the epilepsy disorders Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Mutations that reduce the activity of the mouse Scn8a gene, in contrast, are found to confer seizure resistance and extend the lifespan of mouse models of DS and GEFS+. To investigate the mechanism by which reduced Scn8a expression confers seizure resistance, we induced interictal-like burst discharges in hippocampal slices of heterozygous Scn8a null mice (Scn8a(med/+)) with elevated extracellular potassium. Scn8a(med/+) mutants exhibited reduced epileptiform burst discharge activity after P20, indicating an age-dependent increased threshold for induction of epileptiform discharges. Scn8a deficiency also reduced the occurrence of burst discharges in a GEFS+ mouse model (Scn1a(R1648H/+)). There was no detectable change in the expression levels of Scn1a (Nav1.1) or Scn2a (Nav1.2) in the hippocampus of adult Scn8a(med/+) mutants. To determine whether the increased seizure resistance associated with reduced Scn8a expression was due to alterations that occurred during development, we examined the effect of deleting Scn8a in adult mice. Global Cre-mediated deletion of a heterozygous floxed Scn8a allele in adult mice was found to increase thresholds to chemically and electrically induced seizures. Finally, knockdown of Scn8a gene expression in the adult hippocampus via lentiviral Cre injection resulted in a reduction in the number of EEG-confirmed seizures following the administration of picrotoxin. Our results identify the hippocampus as an important structure in the mediation of Scn8a-dependent seizure protection and suggest that selective targeting of Scn8a activity might be efficacious in patients with epilepsy.


Asunto(s)
Hipocampo/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Convulsiones/metabolismo , Convulsiones/patología , Factores de Edad , Animales , Animales Recién Nacidos , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/patología , Técnicas In Vitro , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Potasio/metabolismo , Desempeño Psicomotor , Tiempo de Reacción/genética , Tiempo de Reacción/fisiología , Convulsiones/etiología , Convulsiones/genética
10.
J Neurosci ; 33(41): 16310-22, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24107962

RESUMEN

The molecular targets and neural circuits that underlie general anesthesia are not fully elucidated. Here, we directly demonstrate that Kv1-family (Shaker-related) delayed rectifier K(+) channels in the central medial thalamic nucleus (CMT) are important targets for volatile anesthetics. The modulation of Kv1 channels by volatiles is network specific as microinfusion of ShK, a potent inhibitor of Kv1.1, Kv1.3, and Kv1.6 channels, into the CMT awakened sevoflurane-anesthetized rodents. In heterologous expression systems, sevoflurane, isoflurane, and desflurane at subsurgical concentrations potentiated delayed rectifier Kv1 channels at low depolarizing potentials. In mouse thalamic brain slices, sevoflurane inhibited firing frequency and delayed the onset of action potentials in CMT neurons, and ShK-186, a Kv1.3-selective inhibitor, prevented these effects. Our findings demonstrate the exquisite sensitivity of delayed rectifier Kv1 channels to modulation by volatile anesthetics and highlight an arousal suppressing role of Kv1 channels in CMT neurons during the process of anesthesia.


Asunto(s)
Anestésicos Generales/farmacología , Nivel de Alerta/efectos de los fármacos , Núcleos Talámicos Intralaminares/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Desflurano , Núcleos Talámicos Intralaminares/metabolismo , Isoflurano/análogos & derivados , Isoflurano/farmacología , Espectroscopía de Resonancia Magnética , Masculino , Éteres Metílicos/farmacología , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Sevoflurano , Canales de Potasio de la Superfamilia Shaker/metabolismo , Compuestos Orgánicos Volátiles/farmacología
11.
Proc Natl Acad Sci U S A ; 109(45): 18577-82, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23090990

RESUMEN

Voltage-gated sodium (Na(V)) and potassium (K(V)) channels are critical components of neuronal action potential generation and propagation. Here, we report that Na(V)ß1 encoded by SCN1b, an integral subunit of Na(V) channels, coassembles with and modulates the biophysical properties of K(V)1 and K(V)7 channels, but not K(V)3 channels, in an isoform-specific manner. Distinct domains of Na(V)ß1 are involved in modulation of the different K(V) channels. Studies with channel chimeras demonstrate that Na(V)ß1-mediated changes in activation kinetics and voltage dependence of activation require interaction of Na(V)ß1 with the channel's voltage-sensing domain, whereas changes in inactivation and deactivation require interaction with the channel's pore domain. A molecular model based on docking studies shows Na(V)ß1 lying in the crevice between the voltage-sensing and pore domains of K(V) channels, making significant contacts with the S1 and S5 segments. Cross-modulation of Na(V) and K(V) channels by Na(V)ß1 may promote diversity and flexibility in the overall control of cellular excitability and signaling.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Activación del Canal Iónico , Cinética , Ratones , Modelos Moleculares , Células PC12 , Canales de Potasio con Entrada de Voltaje/química , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Xenopus
12.
J Biol Chem ; 286(18): 15781-8, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21454658

RESUMEN

Scorpion ß-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant ß-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion ß-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion ß-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.


Asunto(s)
Blattellidae/metabolismo , Proteínas de Insectos/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Venenos de Escorpión/farmacología , Canales de Sodio/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Empalme Alternativo/fisiología , Sustitución de Aminoácidos , Animales , Blattellidae/química , Blattellidae/genética , Expresión Génica , Proteínas de Insectos/química , Proteínas de Insectos/genética , Mutación Missense , Estructura Terciaria de Proteína , Venenos de Escorpión/química , Escorpiones/química , Canales de Sodio/química , Canales de Sodio/genética , Xenopus
13.
Epilepsia ; 51(9): 1650-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20831750

RESUMEN

Mutations in a number of genes encoding voltage-gated sodium channels cause a variety of epilepsy syndromes in humans, including genetic (generalized) epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS, severe myoclonic epilepsy of infancy). Most of these mutations are in the SCN1A gene, and all are dominantly inherited. Most of the mutations that cause DS result in loss of function, whereas all of the known mutations that cause GEFS+ are missense, presumably altering channel activity. Family members with the same GEFS+ mutation often display a wide range of seizure types and severities, and at least part of this variability likely results from variation in other genes. Many different biophysical effects of SCN1A-GEFS+ mutations have been observed in heterologous expression systems, consistent with both gain and loss of channel activity. However, results from mouse models suggest that the primary effect of both GEFS+ and DS mutations is to decrease the activity of GABAergic inhibitory neurons. Decreased activity of the inhibitory circuitry is thus likely to be a major factor contributing to seizure generation in patients with GEFS+ and DS, and may be a general consequence of SCN1A mutations.


Asunto(s)
Epilepsias Mioclónicas/genética , Epilepsia Generalizada/genética , Proteínas del Tejido Nervioso/genética , Convulsiones Febriles/genética , Canales de Sodio/genética , Animales , Canalopatías/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Mosaicismo , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1 , Ratas
14.
J Biol Chem ; 285(13): 9823-9834, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20100831

RESUMEN

Voltage-gated sodium channels are required for the initiation and propagation of action potentials. Mutations in the neuronal voltage-gated sodium channel SCN1A are associated with a growing number of disorders including generalized epilepsy with febrile seizures plus (GEFS+),(7) severe myoclonic epilepsy of infancy, and familial hemiplegic migraine. To gain insight into the effect of SCN1A mutations on neuronal excitability, we introduced the human GEFS+ mutation SCN1A-R1648H into the orthologous mouse gene. Scn1a(RH/RH) mice homozygous for the R1648H mutation exhibit spontaneous generalized seizures and premature death between P16 and P26, whereas Scn1a(RH/+) heterozygous mice exhibit infrequent spontaneous generalized seizures, reduced threshold and accelerated propagation of febrile seizures, and decreased threshold to flurothyl-induced seizures. Inhibitory cortical interneurons from P5-P15 Scn1a(RH/+) and Scn1a(RH/RH) mice demonstrated slower recovery from inactivation, greater use-dependent inactivation, and reduced action potential firing compared with wild-type cells. Excitatory cortical pyramidal neurons were mostly unaffected. These results suggest that this SCN1A mutation predominantly impairs sodium channel activity in interneurons, leading to decreased inhibition. Decreased inhibition may be a common mechanism underlying clinically distinct SCN1A-derived disorders.


Asunto(s)
Regulación de la Expresión Génica , Interneuronas/metabolismo , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1 , Convulsiones/genética
15.
J Biol Chem ; 285(12): 9077-89, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20089854

RESUMEN

The Na(v)1.2 and Na(v)1.3 voltage-gated sodium channel isoforms demonstrate distinct differences in their kinetics and voltage dependence of fast inactivation when expressed in Xenopus oocytes. Co-expression of the auxiliary beta1 subunit accelerated inactivation of both the Na(v)1.2 and Na(v)1.3 isoforms, but it did not eliminate the differences, demonstrating that this property is inherent in the alpha subunit. By constructing chimeric channels between Na(v)1.2 and Na(v)1.3, we demonstrate that the carboxyl terminus is responsible for the differences. The Na(v)1.2 carboxyl terminus caused faster inactivation in the Na(v)1.3 backbone, and the Na(v)1.3 carboxyl terminus caused slower inactivation in the Na(v)1.2 channel. Through analysis of truncated channels, we identified a homologous 60-amino acid region within the carboxyl terminus of the Na(v)1.2 and the Na(v)1.3 channels that is responsible for this modulation of fast inactivation. Site-directed replacement of Na(v)1.3 lysine 1826 in this region to its Na(v)1.2 analogue glutamic acid 1880 (K1826E) shifted the voltage dependence of inactivation toward that of Na(v)1.2. The K1826E mutation also accelerated the inactivation kinetics to a level comparable with that of Na(v)1.2. The reverse Na(v)1.2 E1880K mutation exhibited much slower inactivation kinetics and depolarized inactivation voltage dependence. A complementary mutation located within the inactivation linker of Na(v)1.3 (K1453E) caused inactivation changes mirroring those caused by the K1826E mutation in Na(v)1.3. Therefore, we have identified a homologous carboxyl-terminal residue that regulates the kinetics and voltage dependence of fast inactivation in sodium channels, possibly via a charge-dependent interaction with the inactivation linker.


Asunto(s)
Oocitos/metabolismo , Canales de Sodio/química , Secuencia de Aminoácidos , Animales , Biofisica/métodos , Electrofisiología/métodos , Femenino , Cinética , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.2 , Canal de Sodio Activado por Voltaje NAV1.3 , Proteínas del Tejido Nervioso/química , Isoformas de Proteínas , Estructura Terciaria de Proteína , Ratas , Xenopus laevis
16.
Channels (Austin) ; 3(3): 171-80, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19535906

RESUMEN

Voltage-gated sodium channels are membrane proteins that initiate action potentials in neurons following membrane depolarization. Members of this family show differential distribution at the subcellular level. The mechanisms underlying the targeting of these isoforms are not understood. However, their specificity is important because the isoforms can change the excitability of the membrane due to differences in their electrophysiological properties. In this study, chimeras generated between Na(V)1.2 and Na(V)1.6 were used to test channel domains for sequence that would allow Na(V)1.2 to localize to unmyelinated axons when Na(V)1.6 could not. We show that the N-terminal 202 amino acids of the Na(V)1.2 channel can mediate membrane domain-specific sorting in polarized epithelial cells and are necessary but not sufficient for localizing the isoform to the axons of cultured neurons. The domain-sorting signal is in the region between amino acids 110-202 of the Na(V)1.2 channel. The C-terminal 451 amino acids of Na(V)1.2 likely contain determinants that interact with neuron-specific factors to direct Na(V)1.2 to the axon.


Asunto(s)
Axones/metabolismo , Señales de Clasificación de Proteína/fisiología , Canales de Sodio/metabolismo , Animales , Línea Celular , Perros , Canal de Sodio Activado por Voltaje NAV1.6 , Especificidad de Órganos/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína/fisiología , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales de Sodio/genética , Xenopus
17.
Neurobiol Dis ; 35(1): 91-102, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19409490

RESUMEN

Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of seizure disorders including Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Severe Myoclonic Epilepsy of Infancy (SMEI). To determine the effects of SCN1A mutations on channel function in vivo, we generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses the human SCN1A GEFS+ mutation, R1648H. Mice with the R1648H mutation exhibit a more severe response to the proconvulsant kainic acid compared with mice expressing a control Scn1a transgene. Electrophysiological analysis of dissociated neurons from mice with the R1648H mutation reveal delayed recovery from inactivation and increased use-dependent inactivation only in inhibitory bipolar neurons, as well as a hyperpolarizing shift in the voltage dependence of inactivation only in excitatory pyramidal neurons. These results demonstrate that the effects of SCN1A mutations are cell type-dependent and that the R1648H mutation specifically leads to a reduction in interneuron excitability.


Asunto(s)
Cromosomas Artificiales Bacterianos/fisiología , Modelos Animales de Enfermedad , Epilepsia Generalizada/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Convulsiones Febriles/genética , Canales de Sodio/genética , Animales , Animales Recién Nacidos , Arginina/genética , Fenómenos Biofísicos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Electroencefalografía/métodos , Electromiografía/métodos , Epilepsia Generalizada/inducido químicamente , Epilepsia Generalizada/complicaciones , Epilepsia Generalizada/patología , Histidina/genética , Ácido Kaínico , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1 , Neuronas/fisiología , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Convulsiones Febriles/inducido químicamente , Convulsiones Febriles/complicaciones , Convulsiones Febriles/patología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
18.
J Physiol ; 586(16): 3917-26, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18565993

RESUMEN

Na(v)1.2 and Na(v)1.6 are two voltage-gated sodium channel isoforms found in adult CNS neurons. These isoforms differ in their electrophysiological properties, even though the major regions that are known to be involved in channel activation and inactivation are conserved between them. To determine if the terminal domains of these channels contributed to their activation and fast inactivation differences, we constructed chimeras between the two isoforms and characterized their electrophysiological properties. Exchanging the N-terminal 205 amino acids of Na(v)1.6 and the corresponding 202 amino acids of Na(v)1.2 completely swapped the V_(1)/(2) of steady-state activation between the Na(v)1.2 and Na(v)1.6 channels in an isoform-specific manner. Exchanging the C-terminal 436 amino acids of Na(v)1.6 and the corresponding region of Na(v)1.2 altered the voltage dependence and kinetics of steady-state inactivation, but the changes did not reflect a direct transfer of inactivation properties between the two isoforms. Finally, the N- and C-terminal domains from Na(v)1.6 demonstrated functional cooperation. These results suggest that the terminal sequences of the sodium channel are important for isoform-specific differences between the channels.


Asunto(s)
Potenciales de la Membrana/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/metabolismo , Canales de Sodio/química , Canales de Sodio/metabolismo , Sodio/metabolismo , Sustitución de Aminoácidos , Animales , Células Cultivadas , Mutagénesis Sitio-Dirigida , Canal de Sodio Activado por Voltaje NAV1.2 , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/genética , Canales de Sodio/genética , Relación Estructura-Actividad , Xenopus laevis
19.
Gene ; 408(1-2): 133-45, 2008 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-18077107

RESUMEN

We investigated the role of the 3' non-coding region of a mouse voltage-gated potassium channel mRNA (mKv1.4 mRNA) in post-transcriptional regulation of gene expression. In contrast to an earlier report from studies carried out in Xenopus oocytes, we found that 3' non-coding region sequences of mKv1.4 mRNAs did not significantly affect expression of a heterologous reporter RNA in vitro or in mammalian cells/cell lines. Instead, our data revealed a possible role for alternative polyadenylation mediated by distinct determinants approximately 0.2 kb and approximately 1.2 kb downstream of the Kv1.4 coding region. The use of the downstream polyadenylation signal correlated with the synthesis of a larger Kv1.4 mRNA isoform that was more abundantly expressed than the smaller mRNA species, whose expression was regulated by the upstream polyadenylation signal. Our results suggest that the relative strengths of the polyadenylation signals are major determinants of overall Kv1.4 mRNA abundance in cells.


Asunto(s)
Regiones no Traducidas 3'/química , Canal de Potasio Kv1.4/genética , Poliadenilación , Animales , Secuencia de Bases , Células Cultivadas , Células HeLa , Humanos , Canal de Potasio Kv1.4/metabolismo , Ratones , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas , Xenopus
20.
J Neurovirol ; 13(4): 353-63, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17849319

RESUMEN

Semliki Forest virus (SFV) vectors are widely used in neurobiological studies because they efficiently infect neurons. As with any viral vector, they possess a limited cloning capacity, so infection with different SFV vectors may be required to introduce multiple transgenes into individual cells. However, this approach is limited by superinfection exclusion. The authors examined marker expression in baby hamster kidney cells, mouse cortical neurons, and rat hippocampal neurons using different fluorophore-encoding vectors that are based on the wild-type SFV4 strain and on the less cytopathic SFV4(PD) mutant, which carries two point mutations in nonstructural protein 2. For every fluorophore tested, SFV4(PD) gave higher (up to 22-fold) expression compared to SFV4. In infections using two and three different vectors, SFV4 caused relatively few multifluorescent baby hamster kidney cells when applied at 0-s, 15-min, or 2-h intervals. In contrast, SFV4(PD) permitted significantly enhanced marker coexpression, resulting in 46% doubly and 21% triply fluorescent baby hamster kidney cells, and 67% to 8% doubly fluorescent cortical and hippocampal neurons. At 15-min or 2-h addition intervals, SFV4(PD) still permitted 23% to 36% doubly fluorescent baby hamster kidney cells. The increased efficiency of SFV4(PD) in coexpressing separate markers from different viral particles suggests that mutations in nonstructural protein 2 affect alphaviral superinfection exclusion. The results demonstrate that SFV4(PD) is well-suited to coexpress multiple proteins in neuronal and non-neuronal cells. This capability is particularly valuable to express the various components of heteromeric protein complexes, especially when the individual cDNAs cannot be combined into single SFV particles.


Asunto(s)
Infecciones por Alphavirus/virología , Clonación Molecular/métodos , Cisteína Endopeptidasas/genética , Vectores Genéticos/genética , Neuronas/virología , Virus de los Bosques Semliki/genética , Animales , Línea Celular , Corteza Cerebral/citología , Cricetinae , Colorantes Fluorescentes , Riñón/citología , Proteínas Luminiscentes , Ratones , Mutación Puntual , Ratas , Sobreinfección , Transgenes/genética , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...