Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Appl Environ Microbiol ; 90(1): e0175923, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38112453

RESUMEN

The isolation and selection of yeast strains to improve the quality of the cachaça-Brazilian Spirit-have been studied in our research group. Our strategy considers Saccharomyces cerevisiae as the predominant species involved in sugarcane juice fermentation and the presence of different stressors (osmolarity, temperature, ethanol content, and competition with other microorganisms). It also considers producing balanced concentrations of volatile compounds (higher alcohols and acetate and/or ethyl esters), flocculation capacity, and ethanol production. Since the genetic bases behind these traits of interest are not fully established, the whole genome sequencing of 11 different Saccharomyces cerevisiae strains isolated and selected from different places was analyzed to identify the presence of a specific genetic variation common to cachaça yeast strains. We have identified 20,128 single-nucleotide variants shared by all genomes. Of these shared variants, 37 were new variants (being six missenses), and 4,451 were identified as missenses. We performed a detailed functional annotation (using enrichment analysis, protein-protein interaction network analysis, and database and in-depth literature searches) of these new and missense variants. Many genes carrying these variations were involved in the phenotypes of flocculation, tolerance to fermentative stresses, and production of volatile compounds and ethanol. These results demonstrate the existence of a genetic profile shared by the 11 strains under study that could be associated with the applied selective strategy. Thus, this study points out genes and variants that may be used as molecular markers for selecting strains well suited to the fermentation process, including genetic improvement by genome editing, ultimately producing high-quality beverages and adding value.IMPORTANCEThis work demonstrates the existence of new genetic markers related to different phenotypes used to select yeast strains and mutations in genes directly involved in producing flavoring compounds and ethanol, and others related to flocculation and stress resistance.


Asunto(s)
Perfil Genético , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fermentación , Etanol , Fenotipo , Genómica
2.
Mol Genet Genomics ; 298(3): 735-754, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37017807

RESUMEN

Trichoderma atroviride and Trichoderma harzianum are widely used as commercial biocontrol agents against plant diseases. Recently, T. harzianum IOC-3844 (Th3844) and T. harzianum CBMAI-0179 (Th0179) demonstrated great potential in the enzymatic conversion of lignocellulose into fermentable sugars. Herein, we performed whole-genome sequencing and assembly of the Th3844 and Th0179 strains. To assess the genetic diversity within the genus Trichoderma, the results of both strains were compared with strains of T. atroviride CBMAI-00020 (Ta0020) and T. reesei CBMAI-0711 (Tr0711). The sequencing coverage value of all genomes evaluated in this study was higher than that of previously reported genomes for the same species of Trichoderma. The resulting assembly revealed total lengths of 40 Mb (Th3844), 39 Mb (Th0179), 36 Mb (Ta0020), and 32 Mb (Tr0711). A genome-wide phylogenetic analysis provided details on the relationships of the newly sequenced species with other Trichoderma species. Structural variants revealed genomic rearrangements among Th3844, Th0179, Ta0020, and Tr0711 relative to the T. reesei QM6a reference genome and showed the functional effects of such variants. In conclusion, the findings presented herein allow the visualization of genetic diversity in the evaluated strains and offer opportunities to explore such fungal genomes in future biotechnological and industrial applications.


Asunto(s)
Trichoderma , Filogenia , Trichoderma/genética , Genómica
3.
Microbiol Spectr ; 10(5): e0051922, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094204

RESUMEN

Aspergillus fumigatus is a deadly opportunistic fungal pathogen responsible for ~100,000 annual deaths. Azoles are the first line antifungal agent used against A. fumigatus, but azole resistance has rapidly evolved making treatment challenging. Caspofungin is an important second-line therapy against invasive pulmonary aspergillosis, a severe A. fumigatus infection. Caspofungin functions by inhibiting ß-1,3-glucan synthesis, a primary and essential component of the fungal cell wall. A phenomenon termed the caspofungin paradoxical effect (CPE) has been observed in several fungal species where at higher concentrations of caspofungin, chitin replaces ß-1,3-glucan, morphology returns to normal, and growth rate increases. CPE appears to occur in vivo, and it is therefore clinically important to better understand the genetic contributors to CPE. We applied genomewide association (GWA) analysis and molecular genetics to identify and validate candidate genes involved in CPE. We quantified CPE across 67 clinical isolates and conducted three independent GWA analyses to identify genetic variants associated with CPE. We identified 48 single nucleotide polymorphisms (SNPs) associated with CPE. We used a CRISPR/Cas9 approach to generate gene deletion mutants for seven genes harboring candidate SNPs. Two null mutants, ΔAfu3g13230 and ΔAfu4g07080 (dscP), resulted in reduced basal growth rate and a loss of CPE. We further characterized the dscP phosphatase-null mutant and observed a significant reduction in conidia production and extremely high sensitivity to caspofungin at both low and high concentrations. Collectively, our work reveals the contribution of Afu3g13230 and dscP in CPE and sheds new light on the complex genetic interactions governing this phenotype. IMPORTANCE This is one of the first studies to apply genomewide association (GWA) analysis to identify genes involved in an Aspergillus fumigatus phenotype. A. fumigatus is an opportunistic fungal pathogen that causes hundreds of thousands of infections and ~100,000 deaths each year, and antifungal resistance has rapidly evolved in this species. A phenomenon called the caspofungin paradoxical effect (CPE) occurs in some isolates, where high concentrations of the drug lead to increased growth rate. There is clinical relevance in understanding the genetic basis of this phenotype, since caspofungin concentrations could lead to unintended adverse clinical outcomes in certain cases. Using GWA analysis, we identified several interesting candidate polymorphisms and genes and then generated gene deletion mutants to determine whether these genes were important for CPE. Two of these mutant strains (ΔAfu3g13230 and ΔAfu4g07080/ΔdscP) displayed a loss of the CPE. This study sheds light on the genes involved in clinically important phenotype CPE.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Caspofungina/farmacología , Caspofungina/metabolismo , Aspergillus fumigatus/genética , Antifúngicos/farmacología , Equinocandinas/farmacología , Equinocandinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Azoles/metabolismo , Azoles/farmacología , Quitina , Genómica , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/farmacología
4.
Genetics ; 220(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34718550

RESUMEN

Aspergillus fumigatus is the main causative agent of invasive pulmonary aspergillosis (IPA), a severe disease that affects immunosuppressed patients worldwide. The fungistatic drug caspofungin (CSP) is the second line of therapy against IPA but has increasingly been used against clinical strains that are resistant to azoles, the first line antifungal therapy. In high concentrations, CSP induces a tolerance phenotype with partial reestablishment of fungal growth called CSP paradoxical effect (CPE), resulting from a change in the composition of the cell wall. An increasing number of studies has shown that different isolates of A. fumigatus exhibit phenotypic heterogeneity, including heterogeneity in their CPE response. To gain insights into the underlying molecular mechanisms of CPE response heterogeneity, we analyzed the transcriptomes of two A. fumigatus reference strains, Af293 and CEA17, exposed to low and high CSP concentrations. We found that there is a core transcriptional response that involves genes related to cell wall remodeling processes, mitochondrial function, transmembrane transport, and amino acid and ergosterol metabolism, and a variable response related to secondary metabolite (SM) biosynthesis and iron homeostasis. Specifically, we show here that the overexpression of a SM pathway that works as an iron chelator extinguishes the CPE in both backgrounds, whereas iron depletion is detrimental for the CPE in Af293 but not in CEA17. We next investigated the function of the transcription factor CrzA, whose deletion was previously shown to result in heterogeneity in the CPE response of the Af293 and CEA17 strains. We found that CrzA constitutively binds to and modulates the expression of several genes related to processes involved in CSP tolerance and that crzA deletion differentially impacts the SM production and growth of Af293 and CEA17. As opposed to the ΔcrzACEA17 mutant, the ΔcrzAAf293 mutant fails to activate cell wall remodeling genes upon CSP exposure, which most likely severely affects its macrostructure and extinguishes its CPE. This study describes how heterogeneity in the response to an antifungal agent between A. fumigatus strains stems from heterogeneity in the function of a transcription factor and its downstream target genes.


Asunto(s)
Aspergillus fumigatus
5.
Front Microbiol ; 12: 656548, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897671

RESUMEN

The deleterious effects of human-induced climate change have long been predicted. However, the imminent emergence and spread of new diseases, including fungal infections through the rise of thermotolerant strains, is still neglected, despite being a potential consequence of global warming. Thermotolerance is a remarkable virulence attribute of the mold Aspergillus fumigatus. Under high-temperature stress, opportunistic fungal pathogens deploy an adaptive mechanism known as heat shock (HS) response controlled by heat shock transcription factors (HSFs). In eukaryotes, HSFs regulate the expression of several heat shock proteins (HSPs), such as the chaperone Hsp90, which is part of the cellular program for heat adaptation and a direct target of HSFs. We recently observed that the perturbation in cell wall integrity (CWI) causes concomitant susceptibility to elevated temperatures in A. fumigatus, although the mechanisms underpinning the HS response and CWI cross talking are not elucidated. Here, we aim at further deciphering the interplay between HS and CWI. Our results show that cell wall ultrastructure is severely modified when A. fumigatus is exposed to HS. We identify the transcription factor HsfA as essential for A. fumigatus viability, thermotolerance, and CWI. Indeed, HS and cell wall stress trigger the coordinated expression of both hsfA and hsp90. Furthermore, the CWI signaling pathway components PkcA and MpkA were shown to be important for HsfA and Hsp90 expression in the A. fumigatus biofilms. Lastly, RNA-sequencing confirmed that hsfA regulates the expression of genes related to the HS response, cell wall biosynthesis and remodeling, and lipid homeostasis. Our studies collectively demonstrate the connection between the HS and the CWI pathway, with HsfA playing a crucial role in this cross-pathway regulation, reinforcing the importance of the cell wall in A. fumigatus thermophily.

6.
Genetics ; 218(1)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33705521

RESUMEN

Aspergillus fumigatus produces diverse secondary metabolites whose biological functions and regulation remain to be understood. Despite the importance of the conidia for this fungus, the role of the conidia-born metabolite fumiquinazoline C (FqC) is unclear. Here, we describe a dual function of the cell-wall integrity pathway in regulating FqC biosynthesis dictated by the MAPK kinase MpkA, which phosphorylates one of the nonribosomal peptide synthetases enzymes of the cluster (FmqC), and the transcription factor RlmA, which directly regulates the expression of fmq genes. Another level of crosstalk between the FqC regulation and the cell physiology is described since the deletion of the stress-responsive transcription factor sebA provokes derepression of the fmq cluster and overproduction of FqC. Thus, we describe a mechanism by which A. fumigatus controls FqC biosynthesis orchestrated by MpkA-RlmA and SebA and hence enabling survival and adaptation to the environmental niche, given that FqC is a deterrent of ameba predation.


Asunto(s)
Aspergillus fumigatus/genética , Quinazolinas/metabolismo , Aspergillus fumigatus/metabolismo , Pared Celular/genética , Proteínas Fúngicas/genética , Expresión Génica , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fagocitosis/fisiología , Transducción de Señal , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Transcripción Genética
7.
Virulence ; 12(1): 231-243, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33410730

RESUMEN

The emergence of resistance requires alternative methods to treat Candida albicans infections. We evaluated efficacy of the efflux pump inhibitor (EPI) verapamil (VER) with fluconazole (FLC) against FLC-resistant (CaR) and -susceptible C. albicans (CaS). The susceptibility of both strains to VER and FLC was determined, as well as the synergism of VER with FLC. Experiments were performed in vitro for planktonic cultures and biofilms and in vivo using Galleria mellonella. Larval survival and fungal recovery were evaluated after treatment with VER and FLC. Data were analyzed by analysis of variance and Kaplan-Meier tests. The combination of VER with FLC at sub-lethal concentrations reduced fungal growth. VER inhibited the efflux of rhodamine 123 and showed synergism with FLC against CaR. For biofilms, FLC and VER alone reduced fungal viability. The combination of VER with FLC at sub-lethal concentrations also reduced biofilm viability. In the in vivo assays, VER and FLC used alone or in combination increased the survival of larvae infected with CaR. Reduction of fungal recovery was observed only for larvae infected with CaR and treated with VER with FLC. VER reverted the FLC-resistance of C. albicans. Based on the results obtained, VER reverted the FLC-resistance of C. albicans and showed synergism with FLC against CaR. VER also increased the survival of G. mellonella infected with CaR and reduced the fungal recovery.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Fluconazol/farmacología , Larva/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Verapamilo/farmacología , Animales , Biopelículas/efectos de los fármacos , Transporte Biológico , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Sinergismo Farmacológico , Larva/microbiología , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología
8.
Front Fungal Biol ; 2: 723051, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744093

RESUMEN

Certain Aspergillus fungi cause aspergillosis, a set of diseases that typically affect immunocompromised individuals. Most cases of aspergillosis are caused by Aspergillus fumigatus, which infects millions of people annually. Some closely related so-called cryptic species, such as Aspergillus lentulus, can also cause aspergillosis, albeit at lower frequencies, and they are also clinically relevant. Few antifungal drugs are currently available for treating aspergillosis and there is increasing worldwide concern about the presence of antifungal drug resistance in Aspergillus species. Furthermore, isolates from both A. fumigatus and other Aspergillus pathogens exhibit substantial heterogeneity in their antifungal drug resistance profiles. To gain insights into the evolution of antifungal drug resistance genes in Aspergillus, we investigated signatures of positive selection in 41 genes known to be involved in drug resistance across 42 susceptible and resistant isolates from 12 Aspergillus section Fumigati species. Using codon-based site models of sequence evolution, we identified ten genes that contain 43 sites with signatures of ancient positive selection across our set of species. None of the sites that have experienced positive selection overlap with sites previously reported to be involved in drug resistance. These results identify sites that likely experienced ancient positive selection in Aspergillus genes involved in resistance to antifungal drugs and suggest that historical selective pressures on these genes likely differ from any current selective pressures imposed by antifungal drugs.

9.
Front Fungal Biol ; 2: 632048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744135

RESUMEN

Aspergillus fumigatus is an opportunistic fungus, capable of causing Invasive Aspergillosis in immunocompromised patients, recently transplanted or undergoing chemotherapy. In the present work, we continued the investigation on A. fumigatus AtfA-D transcription factors (TFs) characterizing possible genetic and physical interactions between them after normal growth and stressing conditions. We constructed double null mutants for all the possible combinations of ΔatfA-, -B, -C, and -D, and look into their susceptibility to different stressing conditions. Our results indicate complex genetic interactions among these TFs that could impact the response to different kinds of stressful conditions. AtfA-D interactions also affect the A. fumigatus virulence in Galleria mellonella. AtfA:GFP is ~97% located in the nucleus while about 20-30% of AtfB, -C, and -D:GFP locate into the nucleus in the absence of any stress. Under stressing conditions, AtfB, -C, and -D:GFP translocate to the nucleus about 60-80% upon the addition of sorbitol or H2O2. These four TFs are also interacting physically forming all the possible combinations of heterodimers. We also identified that AtfA-D physically interact with the MAPK SakA in the absence of any stress and upon osmotic and cell wall stresses. They are involved in the accumulation of trehalose, glycogen and metabolic assimilation of different carbon sources.

10.
Microbiol Resour Announc ; 9(40)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004453

RESUMEN

Aspergillus fungi in section Fumigati include important human pathogens. Here, we sequenced the genomes of two strains of Aspergillus hiratsukae and two strains of Aspergillus felis The average genome sizes are 29.5 Mb for A. hiratsukae and 31.8 Mb for A. felis.

11.
mSphere ; 5(5)2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938702

RESUMEN

The high-osmolarity glycerol (HOG) response pathway is a multifunctional signal transduction pathway that specifically transmits ambient osmotic signals. Saccharomyces cerevisiae Hog1p has two upstream signaling branches, the sensor histidine kinase Sln1p and the receptor Sho1p. The Sho1p branch includes two other proteins, the Msb2p mucin and Opy2p. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Here, we investigated the roles played by A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p putative homologues during the activation of the mitogen-activated protein kinase (MAPK) HOG pathway. The shoA, msbA, and opyA singly and doubly null mutants are important for the cell wall integrity (CWI) pathway, oxidative stress, and virulence as assessed by a Galleria mellonella model. Genetic interactions of ShoA, MsbA, and OpyA are also important for proper activation of the SakAHog1p and MpkASlt2 cascade and the response to osmotic and cell wall stresses. Comparative label-free quantitative proteomics analysis of the singly null mutants with the wild-type strain upon caspofungin exposure indicates that the absence of ShoA, MsbA, and OpyA affects the osmotic stress response, carbohydrate metabolism, and protein degradation. The putative receptor mutants showed altered trehalose and glycogen accumulation, suggesting a role for ShoA, MsbA, and OpyA in sugar storage. Protein kinase A activity was also decreased in these mutants. We also observed genetic interactions between SlnA, ShoA, MsbA, and OpyA, suggesting that both branches are important for activation of the HOG/CWI pathways. Our results help in the understanding of the activation and modulation of the HOG and CWI pathways in this important fungal pathogen.IMPORTANCEAspergillus fumigatus is an important human-pathogenic fungal species that is responsible for a high incidence of infections in immunocompromised individuals. A. fumigatus high-osmolarity glycerol (HOG) and cell wall integrity pathways are important for the adaptation to different forms of environmental adversity such as osmotic and oxidative stresses, nutrient limitations, high temperatures, and other chemical and mechanical stresses that may be produced by the host immune system and antifungal drugs. Little is known about how these pathways are activated in this fungal pathogen. Here, we characterize four A. fumigatus putative homologues that are important for the activation of the yeast HOG pathway. A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p are genetically interacting and are essential for the activation of the HOG and cell wall integrity pathways. Our results contribute to the understanding of A. fumigatus adaptation to the host environment.


Asunto(s)
Adaptación Fisiológica , Aspergillus fumigatus/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Animales , Aspergillus fumigatus/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glicerol/metabolismo , Interacciones Huésped-Patógeno , Larva/microbiología , Mariposas Nocturnas/microbiología , Concentración Osmolar , Presión Osmótica , Proteómica , Virulencia
12.
PLoS Genet ; 16(8): e1008996, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32841242

RESUMEN

The utilization of different carbon sources in filamentous fungi underlies a complex regulatory network governed by signaling events of different protein kinase pathways, including the high osmolarity glycerol (HOG) and protein kinase A (PKA) pathways. This work unraveled cross-talk events between these pathways in governing the utilization of preferred (glucose) and non-preferred (xylan, xylose) carbon sources in the reference fungus Aspergillus nidulans. An initial screening of a library of 103 non-essential protein kinase (NPK) deletion strains identified several mitogen-activated protein kinases (MAPKs) to be important for carbon catabolite repression (CCR). We selected the MAPKs Ste7, MpkB, and PbsA for further characterization and show that they are pivotal for HOG pathway activation, PKA activity, CCR via regulation of CreA cellular localization and protein accumulation, as well as for hydrolytic enzyme secretion. Protein-protein interaction studies show that Ste7, MpkB, and PbsA are part of the same protein complex that regulates CreA cellular localization in the presence of xylan and that this complex dissociates upon the addition of glucose, thus allowing CCR to proceed. Glycogen synthase kinase (GSK) A was also identified as part of this protein complex and shown to potentially phosphorylate two serine residues of the HOG MAPKK PbsA. This work shows that carbon source utilization is subject to cross-talk regulation by protein kinases of different signaling pathways. Furthermore, this study provides a model where the correct integration of PKA, HOG, and GSK signaling events are required for the utilization of different carbon sources.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/genética , Glucosa/metabolismo , Glucógeno Sintasa Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Aspergillus nidulans/enzimología , Represión Catabólica/genética , Hongos/genética , Hongos/metabolismo , Glicerol/metabolismo , Concentración Osmolar , Fosforilación/genética , Mapas de Interacción de Proteínas/genética , Proteínas Represoras/genética , Xilosa/metabolismo
13.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32005734

RESUMEN

Aspergillus fumigatus is a major cause of human disease. The survival of this fungus is dependent on the cell wall organization and function of its components. The cell wall integrity pathway (CWIP) is the primary signaling cascade that controls de novo synthesis of the cell wall in fungi. Abundant conidiation is a hallmark in A. fumigatus, and uptake of conidia by a susceptible host is usually the initial event in infection. The formation of conidia is mediated by the development of fungus-specific specialized structures, conidiophores, which are accompanied by cell wall remodeling. The molecular regulation of these changes in cell wall composition required for the rise of conidiophore from the solid surface and to disperse the conidia into the air is currently unknown. Here, we investigated the role of CWIP in conidiation. We show that CWIP pkcAG579R, ΔmpkA, and ΔrlmA mutants displayed reduced conidiation during synchronized asexual differentiation. The transcription factor RlmA directly regulated the expression of regulators of conidiation, including flbB, flbC, brlA, abaA, and rasB, as well as genes involved in cell wall synthesis and remodeling, and this affected the chitin content in aerial hyphae. Phosphorylation of RlmA and MpkA was increased during asexual differentiation. We also observed that MpkA physically associated with the proteins FlbB, FlbC, BrlA, and RasB during this process, suggesting another level of cross talk between the CWIP and asexual development pathways. In summary, our results support the conclusion that one function of the CWIP is the regulation of asexual development in filamentous fungi.IMPORTANCE A remarkable feature of the human pathogen Aspergillus fumigatus is its ability to produce impressive amounts of infectious propagules known as conidia. These particles reach immunocompromised patients and may initiate a life-threatening mycosis. The conidiation process in Aspergillus is governed by a sequence of proteins that coordinate the development of conidiophores. This process requires the remodeling of the cell wall so that the conidiophores can rise and withstand the chains of conidia. The events regulating cell wall remodeling during conidiation are currently unknown. Here, we show that the cell wall integrity pathway (CWIP) components RlmA and MpkA directly contribute to the activation of the conidiation cascade by enabling transcription or phosphorylation of critical proteins involved in asexual development. This study points to an essential role for the CWIP during conidiation and provides further insights into the complex regulation of asexual development in filamentous fungi.


Asunto(s)
Aspergillus fumigatus/fisiología , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Reproducción Asexuada , Transducción de Señal , Esporas Fúngicas/crecimiento & desarrollo , Aspergilosis/microbiología , Aspergillus fumigatus/crecimiento & desarrollo , Proteínas Fúngicas/genética , Humanos
14.
Front Fungal Biol ; 1: 596090, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-37743875
15.
Biomolecules ; 9(12)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779176

RESUMEN

Trichoderma species are known for their ability to produce lytic enzymes, such as exoglucanases, endoglucanases, chitinases, and proteases, which play important roles in cell wall degradation of phytopathogens. ß-glucanases play crucial roles in the morphogenetic-morphological process during the development and differentiation processes in Trichoderma species, which have ß-glucans as the primary components of their cell walls. Despite the importance of glucanases in the mycoparasitism of Trichoderma spp., only a few functional analysis studies have been conducted on glucanases. In the present study, we used a functional genomics approach to investigate the functional role of the gluc31 gene, which encodes an endo-ß-1,3-glucanase belonging to the GH16 family in Trichoderma harzianum ALL42. We demonstrated that the absence of the gluc31 gene did not affect the in vivo mycoparasitism ability of mutant T. harzianum ALL42; however, gluc31 evidently influenced cell wall organization. Polymer measurements and fluorescence microscopy analyses indicated that the lack of the gluc31 gene induced a compensatory response by increasing the production of chitin and glucan polymers on the cell walls of the mutant hyphae. The mutant strain became more resistant to the fungicide benomyl compared to the parental strain. Furthermore, qRT-PCR analysis showed that the absence of gluc31 in T. harzianum resulted in the differential expression of other glycosyl hydrolases belonging to the GH16 family, because of functional redundancy among the glucanases.


Asunto(s)
Antibiosis/genética , Pared Celular/enzimología , Pared Celular/metabolismo , Endo-1,3(4)-beta-Glucanasa/metabolismo , Trichoderma/enzimología , Trichoderma/metabolismo , Ascomicetos/metabolismo , Benomilo/farmacología , Pared Celular/química , Pared Celular/efectos de los fármacos , Quitina/metabolismo , Endo-1,3(4)-beta-Glucanasa/genética , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genómica , Microscopía Fluorescente , Filogenia , Rhizoctonia/metabolismo , Trichoderma/efectos de los fármacos , Trichoderma/patogenicidad , beta-Glucanos/metabolismo
16.
mSystems ; 4(4)2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213522

RESUMEN

Filamentous fungi are remarkable producers of enzymes dedicated to the degradation of sugar polymers found in the plant cell wall. Here, we integrated transcriptomic data to identify novel transcription factors (TFs) related to the control of gene expression of lignocellulosic hydrolases in Trichoderma reesei and Aspergillus nidulans Using various sets of differentially expressed genes, we identified some putative cis-regulatory elements that were related to known binding sites for Saccharomyces cerevisiae TFs. Comparative genomics allowed the identification of six transcriptional factors in filamentous fungi that have corresponding S. cerevisiae homologs. Additionally, a knockout strain of T. reesei lacking one of these TFs (S. cerevisiae AZF1 homolog) displayed strong reductions in the levels of expression of several cellulase-encoding genes in response to both Avicel and sugarcane bagasse, revealing a new player in the complex regulatory network operating in filamentous fungi during plant biomass degradation. Finally, RNA sequencing (RNA-seq) analysis showed the scope of the AZF1 homologue in regulating a number of processes in T. reesei, and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) provided evidence for the direct interaction of this TF in the promoter regions of cel7a, cel45a, and swo Therefore, we identified here a novel TF which plays a positive effect in the expression of cellulase-encoding genes in T. reesei IMPORTANCE In this work, we used a systems biology approach to map new regulatory interactions in Trichoderma reesei controlling the expression of genes encoding cellulase and hemicellulase. By integrating transcriptomics related to complex biomass degradation, we were able to identify a novel transcriptional regulator which is able to activate the expression of these genes in response to two different cellulose sources. In vivo experimental validation confirmed the role of this new regulator in several other processes related to carbon source utilization and nutrient transport. Therefore, this work revealed novel forms of regulatory interaction in this model system for plant biomass deconstruction and also represented a new approach that could be easy applied to other organisms.

17.
mBio ; 9(6)2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538182

RESUMEN

Aspergillus fumigatus mitogen-activated protein kinases (MAPKs) are involved in maintaining the normal morphology of the cell wall and providing resistance against cell wall-damaging agents. Upon cell wall stress, cell wall-related sugars need to be synthesized from carbohydrate storage compounds. Here we show that this process is dependent on cAMP-dependent protein kinase A (PKA) activity and regulated by the high-osmolarity glycerol response (HOG) MAPKs SakA and MpkC. These protein kinases are necessary for normal accumulation/degradation of trehalose and glycogen, and the lack of these genes reduces glucose uptake and glycogen synthesis. Alterations in glycogen synthesis were observed for the sakA and mpkC deletion mutants, which also displayed alterations in carbohydrate exposure on the cell wall. Carbohydrate mobilization is controlled by SakA interaction with PkaC1 and PkaR, suggesting a putative mechanism where the PkaR regulatory subunit leaves the complex and releases the SakA-PkaC1 complex for activation of enzymes involved in carbohydrate mobilization. This work reveals the communication between the HOG and PKA pathways for carbohydrate mobilization for cell wall construction.IMPORTANCEAspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections such as invasive pulmonary aspergillosis, especially in immunocompromised patients. The fungal cell wall is the main component responsible for recognition by the immune system, due to the specific composition of polysaccharide carbohydrates exposed on the surface of the fungal cell wall called pathogen-associated molecular patterns (PAMPs). Key enzymes in the fungal cell wall biosynthesis are a good target for fungal drug development. This report elucidates the cooperation between the HOG and PKA pathways in the mobilization of carbohydrates for fungal cell wall biosynthesis. We suggest that the reduced mobilization of simple sugars causes defects in the structure of the fungal cell wall. In summary, we propose that SakA is important for PKA activity, therefore regulating the availability and mobilization of monosaccharides for fungal cell wall biosynthesis during cell wall damage and the osmotic stress response.


Asunto(s)
Aspergillus fumigatus/metabolismo , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Redes Reguladoras de Genes , Glicerol/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/genética , AMP Cíclico , Glucógeno/metabolismo , Humanos , Transducción de Señal
18.
Sci Rep ; 8(1): 12314, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120327

RESUMEN

Standing among the front defense strategies against pathogens, host phagocytic cells release various oxidants. Therefore, pathogens have to cope with stressful conditions at the site of infection. Peroxiredoxins (Prx) are highly reactive and abundant peroxidases that can support virulence and persistence of pathogens in distinct hosts. Here, we revealed that the opportunistic human pathogen A. fumigatus presents three 1-Cys Prx (Prx6 subfamily), which is unprecedented. We showed that PrxB and PrxC were in mitochondria, while Prx1 was in cytosol. As observed for other Prxs, recombinant Prx1 and PrxC decomposed H2O2 at elevated velocities (rate constants in the 107 M-1s-1 range). Deletion mutants for each Prx displayed higher sensitivity to oxidative challenge in comparison with the wild-type strain. Additionally, cytosolic Prx1 was important for A. fumigatus survival upon electron transport dysfunction. Expression of Prxs was dependent on the SakAHOG1 MAP kinase and the Yap1YAP1 transcription factor, a global regulator of the oxidative stress response in fungi. Finally, cytosolic Prx1 played a major role in pathogenicity, since it is required for full virulence, using a neutropenic mouse infection model. Our data indicate that the three 1-Cys Prxs act together to maintain the redox balance of A. fumigatus.


Asunto(s)
Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidad , Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/metabolismo , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Subunidad p40 de la Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Estimación de Kaplan-Meier , Cinética , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Peroxidasa , Factor de Necrosis Tumoral alfa/metabolismo , Virulencia
19.
mBio ; 9(3)2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921666

RESUMEN

The attachment of one or more ubiquitin molecules by SCF (Skp-Cullin-F-box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungus Aspergillus nidulans, CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δfbx23 mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications.IMPORTANCE The production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organism Aspergillus nidulans in the presence of glucose and the biotechnologically relevant plant polysaccharide xylan.


Asunto(s)
Aspergillus nidulans/genética , Represión Catabólica/genética , Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Represoras/metabolismo , Aspergillus nidulans/metabolismo , Citoplasma/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Proteínas F-Box/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Glucosa/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Xilanos/metabolismo
20.
Antonie Van Leeuwenhoek ; 111(10): 1749-1766, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29663103

RESUMEN

This work was performed to verify the potential of yeast strains isolated from cachaça distilleries for two specific biotechnological applications: beer and bioethanol production. In the beer production, the strains were tested for characteristics required in brewery practices, such as: capacity to ferment maltose and maltotriose, ability to grow at lowest temperatures, low H2S production, and flocculation profile. Among the strains tested, two of them showed appropriate characteristics to produce two different beer styles: lager and ale. Moreover, both strains were tested for cachaça production and the results confirmed the capacity of these strains to improve the quality of cachaça. In the bioethanol production, the fermentation process was performed similarly to that used by bioethanol industries: recycling of yeast biomass in the fermentative process with sulfuric acid washings (pH 2.0). The production of ethanol, glycerol, organic acids, dry cell weight, carbohydrate consumption, and cellular viability were analyzed. One strain presented fermentative parameters similar to PE2, industrial/commercial strain, with equivalent ethanol yields and cellular viability during all fermentative cycles. This work demonstrates that cachaça distilleries seem to be an interesting environment to select new yeast strains to be used in biotechnology applications as beer and bioethanol production.


Asunto(s)
Cerveza , Etanol , Fermentación , Levaduras/metabolismo , Cerveza/análisis , Etanol/análisis , Etanol/metabolismo , Aromatizantes/metabolismo , Tipificación Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Trisacáridos/metabolismo , Levaduras/clasificación , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...