Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Inorg Biochem ; 245: 112241, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37209461

RESUMEN

Cytochromes P450 (CYP), enzymes involved in the metabolism of endogenous and xenobiotic substrates, provide an excellent model system to study how membrane proteins with unique functions have catalytically adapted through evolution. Molecular adaptation of deep-sea proteins to high hydrostatic pressure remains poorly understood. Herein, we have characterized recombinant cytochrome P450 sterol 14α-demethylase (CYP51), an essential enzyme of cholesterol biosynthesis, from an abyssal fish species, Coryphaenoides armatus. C. armatus CYP51 was heterologously expressed in Escherichia coli following N-terminal truncation and purified to homogeneity. Recombinant C. armatus CYP51 bound its sterol substrate lanosterol giving a Type I binding spectra (KD 15 µM) and catalyzed lanosterol 14α-demethylation turnover at 5.8 nmol/min/nmol P450. C. armatus CYP51 also bound the azole antifungals ketoconazole (KD 0.12 µM) and propiconazole (KD 0.54 µM) as determined by Type II absorbance spectra. Comparison of C. armatus CYP51 primary sequence and modeled structures with other CYP51s identified amino acid substitutions that may confer an ability to function under pressures of the deep sea and revealed heretofore undescribed internal cavities in human and other non-deep sea CYP51s. The functional significance of these cavities is not known. PROLOGUE: This paper is dedicated in memory of Michael Waterman and Tsuneo Omura, who as good friends and colleagues enriched our lives. They continue to inspire us.


Asunto(s)
Antifúngicos , Lanosterol , Animales , Humanos , Lanosterol/química , Esterol 14-Desmetilasa/química , Antifúngicos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Esteroles , Peces
2.
Biomolecules ; 12(8)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36009001

RESUMEN

Flavodoxins are small electron transport proteins that are involved in a myriad of photosynthetic and non-photosynthetic metabolic pathways in Bacteria (including cyanobacteria), Archaea and some algae. The sequenced genome of 0305φ8-36, a large bacteriophage that infects the soil bacterium Bacillus thuringiensis, was predicted to encode a putative flavodoxin redox protein. Here we confirm that 0305φ8-36 phage encodes a FMN-containing flavodoxin polypeptide and we report the expression, purification and enzymatic characterization of the recombinant protein. Purified 0305φ8-36 flavodoxin has near-identical spectral properties to control, purified Escherichia coli flavodoxin. Using in vitro assays we show that 0305φ8-36 flavodoxin can be reconstituted with E. coli flavodoxin reductase and support regio- and stereospecific cytochrome P450 CYP170A1 allyl-oxidation of epi-isozizaene to the sesquiterpene antibiotic product albaflavenone, found in the soil bacterium Streptomyces coelicolor. In vivo, 0305φ8-36 flavodoxin is predicted to mediate the 2-electron reduction of the ß subunit of phage-encoded ribonucleotide reductase to catalyse the conversion of ribonucleotides to deoxyribonucleotides during viral replication. Our results demonstrate that this phage flavodoxin has the potential to manipulate and drive bacterial P450 cellular metabolism, which may affect both the host biological fitness and the communal microbiome. Such a scenario may also be applicable in other viral-host symbiotic/parasitic relationships.


Asunto(s)
Flavodoxina , Streptomyces coelicolor , Sistema Enzimático del Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavodoxina/química , Flavodoxina/genética , Flavodoxina/metabolismo , Oxidación-Reducción , Suelo , Streptomyces coelicolor/metabolismo
3.
Elife ; 112022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801640

RESUMEN

Viruses generally are defined as lacking the fundamental properties of living organisms in that they do not harbor an energy metabolism system or protein synthesis machinery. However, the discovery of giant viruses of amoeba has fundamentally challenged this view because of their exceptional genome properties, particle sizes and encoding of the enzyme machinery for some steps of protein synthesis. Although giant viruses are not able to replicate autonomously and still require a host for their multiplication, numerous metabolic genes involved in energy production have been recently detected in giant virus genomes from many environments. These findings have further blurred the boundaries that separate viruses and living organisms. Herein, we summarize information concerning genes and proteins involved in cellular metabolic pathways and their orthologues that have, surprisingly, been discovered in giant viruses. The remarkable diversity of metabolic genes described in giant viruses include genes encoding enzymes involved in glycolysis, gluconeogenesis, tricarboxylic acid cycle, photosynthesis, and ß-oxidation. These viral genes are thought to have been acquired from diverse biological sources through lateral gene transfer early in the evolution of Nucleo-Cytoplasmic Large DNA Viruses, or in some cases more recently. It was assumed that viruses are capable of hijacking host metabolic networks. But the giant virus auxiliary metabolic genes also may represent another form of host metabolism manipulation, by expanding the catalytic capabilities of the host cells especially in harsh environments, providing the infected host cells with a selective evolutionary advantage compared to non-infected cells and hence favoring the viral replication. However, the mechanism of these genes' functionality remains unclear to date.


Asunto(s)
Amoeba , Virus Gigantes , Virus , Virus ADN/genética , Genoma Viral , Virus Gigantes/genética , Filogenia , Virus/genética
4.
Integr Comp Biol ; 61(6): 2163-2179, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34427654

RESUMEN

Why do some biological systems and communities persist while others fail? Robustness, a system's stability, and resilience, the ability to return to a stable state, are key concepts that span multiple disciplines within and outside the biological sciences. Discovering and applying common rules that govern the robustness and resilience of biological systems is a critical step toward creating solutions for species survival in the face of climate change, as well as the for the ever-increasing need for food, health, and energy for human populations. We propose that network theory provides a framework for universal scalable mathematical models to describe robustness and resilience and the relationship between them, and hypothesize that resilience at lower organization levels contribute to robust systems. Insightful models of biological systems can be generated by quantifying the mechanisms of redundancy, diversity, and connectivity of networks, from biochemical processes to ecosystems. These models provide pathways towards understanding how evolvability can both contribute to and result from robustness and resilience under dynamic conditions. We now have an abundance of data from model and non-model systems and the technological and computational advances for studying complex systems. Several conceptual and policy advances will allow the research community to elucidate the rules of robustness and resilience. Conceptually, a common language and data structure that can be applied across levels of biological organization needs to be developed. Policy advances such as cross-disciplinary funding mechanisms, access to affordable computational capacity, and the integration of network theory and computer science within the standard biological science curriculum will provide the needed research environments. This new understanding of biological systems will allow us to derive ever more useful forecasts of biological behaviors and revolutionize the engineering of biological systems that can survive changing environments or disease, navigate the deepest oceans, or sustain life throughout the solar system.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biología , Océanos y Mares
5.
Sci Rep ; 11(1): 23892, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903767

RESUMEN

Orphan cytochrome P450 (CYP) enzymes are those for which biological substrates and function(s) are unknown. Cytochrome P450 20A1 (CYP20A1) is the last human orphan P450 enzyme, and orthologs occur as single genes in every vertebrate genome sequenced to date. The occurrence of high levels of CYP20A1 transcripts in human substantia nigra and hippocampus and abundant maternal transcripts in zebrafish eggs strongly suggest roles both in the brain and during early embryonic development. Patients with chromosome 2 microdeletions including CYP20A1 show hyperactivity and bouts of anxiety, among other conditions. Here, we created zebrafish cyp20a1 mutants using CRISPR/Cas9, providing vertebrate models with which to study the role of CYP20A1 in behavior and other neurodevelopmental functions. The homozygous cyp20a1 null mutants exhibited significant behavioral differences from wild-type zebrafish, both in larval and adult animals. Larval cyp20a1-/- mutants exhibited a strong increase in light-simulated movement (i.e., light-dark assay), which was interpreted as hyperactivity. Further, the larvae exhibited mild hypoactivity during the adaptation period of the optomotor assays. Adult cyp20a1 null fish showed a pronounced delay in adapting to new environments, which is consistent with an anxiety paradigm. Taken together with our earlier morpholino cyp20a1 knockdown results, the results described herein suggest that the orphan CYP20A1 has a neurophysiological role.


Asunto(s)
Ansiedad/genética , Sistema Enzimático del Citocromo P-450 , Movimiento , Percepción Visual , Proteínas de Pez Cebra , Pez Cebra , Adaptación Fisiológica , Animales , Sistemas CRISPR-Cas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/fisiología , Homocigoto , Mutación con Pérdida de Función , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
6.
Commun Biol ; 4(1): 1129, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561524

RESUMEN

The most abundant polychlorinated biphenyl (PCB) congeners found in the environment and in humans are neurotoxic. This is of particular concern for early life stages because the exposure of the more vulnerable developing nervous system to neurotoxic chemicals can result in neurobehavioral disorders. In this study, we uncover currently unknown links between PCB target mechanisms and neurobehavioral deficits using zebrafish as a vertebrate model. We investigated the effects of the abundant non-dioxin-like (NDL) congener PCB153 on neuronal morphology and synaptic transmission linked to the proper execution of a sensorimotor response. Zebrafish that were exposed during development to concentrations similar to those found in human cord blood and PCB contaminated sites showed a delay in startle response. Morphological and biochemical data demonstrate that even though PCB153-induced swelling of afferent sensory neurons, the disruption of dopaminergic and GABAergic signaling appears to contribute to PCB-induced motor deficits. A similar delay was observed for other NDL congeners but not for the potent dioxin-like congener PCB126. The effects on important and broadly conserved signaling mechanisms in vertebrates suggest that NDL PCBs may contribute to neurodevelopmental abnormalities in humans and increased selection pressures in vertebrate wildlife.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Neuronas GABAérgicas/fisiología , Bifenilos Policlorados/efectos adversos , Transducción de Señal/efectos de los fármacos , Contaminantes Químicos del Agua/efectos adversos , Pez Cebra/fisiología , Animales
7.
Sci Rep ; 11(1): 9834, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972594

RESUMEN

The cytochrome P450 (CYP) superfamily is a diverse and important enzyme family, playing a central role in chemical defense and in synthesis and metabolism of major biological signaling molecules. The CYPomes of four cnidarian genomes (Hydra vulgaris, Acropora digitifera, Aurelia aurita, Nematostella vectensis) were annotated; phylogenetic analyses determined the evolutionary relationships amongst the sequences and with existing metazoan CYPs. 155 functional CYPs were identified and 90 fragments. Genes were from 24 new CYP families and several new subfamilies; genes were in 9 of the 12 established metazoan CYP clans. All species had large expansions of clan 2 diversity, with H. vulgaris having reduced diversity for both clan 3 and mitochondrial clan. We identified potential candidates for xenobiotic metabolism and steroidogenesis. That each genome contained multiple, novel CYP families may reflect the large evolutionary distance within the cnidarians, unique physiology in the cnidarian classes, and/or different ecology of the individual species.


Asunto(s)
Evolución Biológica , Cnidarios/genética , Sistema Enzimático del Citocromo P-450/genética , Familia de Multigenes , Animales , Cnidarios/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Genoma , Filogenia , Xenobióticos/metabolismo
8.
Sci Rep ; 11(1): 10546, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006915

RESUMEN

How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Teleost fish is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes. We have previously shown that the xenosensing pregnane x receptor (pxr, nr1i2) is lost in many teleost species, including Atlantic cod (Gadus morhua) and three-spined stickleback (Gasterosteus aculeatus), but it is not known if compensatory mechanisms or signaling pathways have evolved in its absence. In this study, we compared the genes comprising the chemical defensome of five fish species that span the teleosteii evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafish (Danio rerio), medaka (Oryzias latipes), Atlantic killifish (Fundulus heteroclitus), Atlantic cod, and three-spined stickleback. Genome mining revealed evolved differences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants, but we did not observe any candidates of compensatory mechanisms or pathways in cod and stickleback in the absence of pxr. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.


Asunto(s)
Peces/fisiología , Modelos Biológicos , Animales , Biotransformación , Peces/clasificación , Genoma , Filogenia , Medición de Riesgo , Especificidad de la Especie , Xenobióticos/farmacocinética , Pez Cebra/genética
9.
Environ Toxicol Pharmacol ; 83: 103580, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33429071

RESUMEN

Previous reports suggested that non-dioxin-like (NDL) PCB153 effects on cytochrome P450 3A (Cyp3a) expression in Atlantic killifish (Fundulus heteroclitus) gills differed between F0 generation fish from a PCB site (New Bedford Harbor; NBH) and a reference site (Scorton Creek; SC). Here, we examined effects of PCB153, dioxin-like (DL) PCB126, or a mixture of both, on Cyp3a56 mRNA in killifish generations removed from the wild, without environmental PCB exposures. PCB126 effects in liver and gills differed between populations, as expected. Gill Cyp3a56 was not affected by either congener in NBH F2 generation fish, but was induced by PCB153 in SC F1 fish, with females showing a greater response. PCB153 did not affect Cyp3a56 in liver of either population. Results suggest a heritable resistance to NDL-PCBs in killifish from NBH, in addition to that reported for DL PCBs. Induction of Cyp3a56 in gills may be a biomarker of exposure to NDL PCBs in fish populations that are not resistant to PCBs.


Asunto(s)
Citocromo P-450 CYP3A/biosíntesis , Proteínas de Peces/biosíntesis , Fundulidae , Bifenilos Policlorados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP3A/genética , Tolerancia a Medicamentos , Inducción Enzimática , Femenino , Proteínas de Peces/genética , Fundulidae/genética , Fundulidae/metabolismo , Branquias/efectos de los fármacos , Branquias/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Receptor X de Pregnano/genética , ARN Mensajero/metabolismo
10.
Mol Biol Evol ; 38(3): 952-967, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33031537

RESUMEN

Sterol biosynthesis, primarily associated with eukaryotic kingdoms of life, occurs as an abbreviated pathway in the bacterium Methylococcus capsulatus. Sterol 14α-demethylation is an essential step in this pathway and is catalyzed by cytochrome P450 51 (CYP51). In M. capsulatus, the enzyme consists of the P450 domain naturally fused to a ferredoxin domain at the C-terminus (CYP51fx). The structure of M. capsulatus CYP51fx was solved to 2.7 Å resolution and is the first structure of a bacterial sterol biosynthetic enzyme. The structure contained one P450 molecule per asymmetric unit with no electron density seen for ferredoxin. We connect this with the requirement of P450 substrate binding in order to activate productive ferredoxin binding. Further, the structure of the P450 domain with bound detergent (which replaced the substrate upon crystallization) was solved to 2.4 Å resolution. Comparison of these two structures to the CYP51s from human, fungi, and protozoa reveals strict conservation of the overall protein architecture. However, the structure of an "orphan" P450 from nonsterol-producing Mycobacterium tuberculosis that also has CYP51 activity reveals marked differences, suggesting that loss of function in vivo might have led to alterations in the structural constraints. Our results are consistent with the idea that eukaryotic and bacterial CYP51s evolved from a common cenancestor and that early eukaryotes may have recruited CYP51 from a bacterial source. The idea is supported by bioinformatic analysis, revealing the presence of CYP51 genes in >1,000 bacteria from nine different phyla, >50 of them being natural CYP51fx fusion proteins.


Asunto(s)
Evolución Molecular , Methylococcus capsulatus/genética , Esterol 14-Desmetilasa/genética , Animales , Humanos , Methylococcus capsulatus/enzimología , Conformación Proteica , Esterol 14-Desmetilasa/química
11.
Toxicol Sci ; 174(1): 51-62, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868891

RESUMEN

Pregnane X receptor (PXR; NR1I2) is a nuclear receptor that regulates transcriptional responses to drug or xenobiotic exposure, including induction of CYP3A transcription, in many vertebrate species. PXR is activated by a wide range of ligands that differ across species, making functional studies on its role in the chemical defensome most relevant when approached in a species-specific manner. Knockout studies in mammals have shown a requirement for PXR in ligand-dependent activation of CYP3A expression or reporter gene activity. Morpholino knockdown of Pxr in zebrafish indicated a similar requirement. Here, we report on the generation of 2 zebrafish lines each carrying a heritable deletion in the pxr coding region, predicted to result in loss of a functional gene product. To our surprise, larvae homozygous for either of the pxr mutant alleles retain their ability to induce cyp3a65 mRNA expression following exposure to the established zebrafish Pxr ligand, pregnenolone. Thus, zebrafish carrying pxr alleles with deletions in either the DNA binding or the ligand-binding domains did not yield a loss-of-function phenotype, suggesting that a compensatory mechanism is responsible for cyp3a65 induction. Alternative possibilities are that Pxr is not required for the induction of selected genes, or that truncated yet functional mutant Pxr is sufficient for the downstream transcriptional effects. It is crucial that we develop a better understanding for the role of Pxr in this important biomedical test species. This study highlights the potential for compensatory mechanisms to avoid deleterious effects arising from gene mutations.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/biosíntesis , Sistemas CRISPR-Cas , Inductores de las Enzimas del Citocromo P-450/toxicidad , Marcación de Gen , Oxidorreductasas N-Desmetilantes/biosíntesis , Receptor X de Pregnano/agonistas , Pregnenolona/toxicidad , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Hidrocarburo de Aril Hidroxilasas/genética , Inducción Enzimática , Ligandos , Mutación , Oxidorreductasas N-Desmetilantes/genética , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
12.
Proc Natl Acad Sci U S A ; 116(25): 12343-12352, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31167942

RESUMEN

Genes encoding cytochrome P450 (CYP; P450) enzymes occur widely in the Archaea, Bacteria, and Eukarya, where they play important roles in metabolism of endogenous regulatory molecules and exogenous chemicals. We now report that genes for multiple and unique P450s occur commonly in giant viruses in the Mimiviridae, Pandoraviridae, and other families in the proposed order Megavirales. P450 genes were also identified in a herpesvirus (Ranid herpesvirus 3) and a phage (Mycobacterium phage Adler). The Adler phage P450 was classified as CYP102L1, and the crystal structure of the open form was solved at 2.5 Å. Genes encoding known redox partners for P450s (cytochrome P450 reductase, ferredoxin and ferredoxin reductase, and flavodoxin and flavodoxin reductase) were not found in any viral genome so far described, implying that host redox partners may drive viral P450 activities. Giant virus P450 proteins share no more than 25% identity with the P450 gene products we identified in Acanthamoeba castellanii, an amoeba host for many giant viruses. Thus, the origin of the unique P450 genes in giant viruses remains unknown. If giant virus P450 genes were acquired from a host, we suggest it could have been from an as yet unknown and possibly ancient host. These studies expand the horizon in the evolution and diversity of the enormously important P450 superfamily. Determining the origin and function of P450s in giant viruses may help to discern the origin of the giant viruses themselves.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Evolución Molecular , Familia de Multigenes , Virus/enzimología , Sistema Enzimático del Citocromo P-450/genética
13.
Toxicol Sci ; 167(2): 536-545, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30321412

RESUMEN

Interactions between regulatory pathways allow organisms to adapt to their environment and respond to stress. One interaction that has been recently identified occurs between the aryl hydrocarbon receptor (AHR) and the nuclear factor erythroid-2 related factor (NRF) family. Each transcription factor regulates numerous downstream genes involved in the cellular response to toxicants and oxidative stress; they are also implicated in normal developmental pathways. The zebrafish model was used to explore the role of AHR regulation of nrf genes during development and in response to toxicant exposure. To determine if AHR1b is responsible for transcriptional regulation of 6 nrf genes during development, a loss-of-function experiment using morpholino-modified oligonucleotides was conducted followed by a chromatin immunoprecipitation study at the beginning of the pharyngula period (24 h postfertilization). The expression of nrf1a was AHR1b dependent and its expression was directly regulated through specific XREs in its cis-promoter. However, nrf1a expression was not altered by exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a toxicant and prototypic AHR agonist. The expression of nrf1b, nrf2a, and nfe2 was induced by TCDD, and AHR1b directly regulated their expression by binding to cis-XRE promoter elements. Last, nrf2b and nrf3 were neither induced by TCDD nor regulated by AHR1b. These results show that AHR1b transcriptionally regulates nrf genes under toxicant modulation via binding to specific XREs. These data provide a better understanding of how combinatorial molecular signaling potentially protects embryos from embryotoxic events following toxicant exposure.


Asunto(s)
Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Factor 2 Relacionado con NF-E2/genética , Receptores de Hidrocarburo de Aril/genética , Proteínas de Pez Cebra/genética , Pez Cebra , Animales , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
14.
Toxicol Sci ; 168(1): 28-39, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30371853

RESUMEN

Regulators of biotransformation are of particular interest in pharmacology and toxicology, determining in part the metabolism, disposition, and toxicity of chemicals. The nuclear receptor NR1I2 (pregnane X receptor, PXR) is a prominent xenosensor that regulates the expression of biotransformation enzymes governing elimination of many exogenous as well as endogenous compounds. Zebrafish (Danio rerio) has only one gene locus for pxr, but different genetic variants have been identified in zebrafish. However, the prevalence and significance of these variants are unknown. We hypothesize that sequence variation occurring in the Pxr gene of zebrafish may affect the action and fate of many chemicals in this species, a key model organism in various fields of research, including environmental toxicology. Here, we examine variation in Pxr sequences from four different strains of zebrafish and assess the responses of each Pxr to clotrimazole and butyl-4-aminobenzoate. The Pxr variants differed in both their ability to bind these structurally different ligands and to regulate reporter gene expression in vitro. We infer that the observed sequence variations in zebrafish Pxrs likely affect the response to putative Pxr agonists in vivo and potentially cause strain-specific biotransformation of xenobiotics in zebrafish. Thus, the choice of zebrafish strain could affect the outcome of downstream toxicological studies.


Asunto(s)
Receptor X de Pregnano/química , Receptor X de Pregnano/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Genes Reporteros , Ligandos , Simulación del Acoplamiento Molecular , Análisis de Secuencia , Relación Estructura-Actividad
15.
Sci Rep ; 8(1): 10404, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991818

RESUMEN

Sensitivity to environmental stressors largely depend on the genetic complement of the organism. Recent sequencing and assembly of teleost fish genomes enable us to trace the evolution of defense genes in the largest and most diverse group of vertebrates. Through genomic searches and in-depth analysis of gene loci in 76 teleost genomes, we show here that the xenosensor pregnane X receptor (Pxr, Nr1i2) is absent in more than half of these species. Notably, out of the 27 genome assemblies that belong to the Gadiformes order, the pxr gene was only retained in the Merluccidae family (hakes) and Pelagic cod (Melanonus zugmayeri). As an important receptor for a wide range of drugs and environmental pollutants, vertebrate PXR regulate the transcription of a number of genes involved in the biotransformation of xenobiotics, including cytochrome P450 enzymes (CYP). In the absence of Pxr, we suggest that the aryl hydrocarbon receptor (Ahr) have evolved an extended regulatory role by governing the expression of certain Pxr target genes, such as cyp3a, in Atlantic cod (Gadus morhua). However, as several independent losses of pxr have occurred during teleost evolution, other lineages and species may have adapted alternative compensating mechanisms for controlling crucial cellular defense mechanisms.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular , Receptor X de Pregnano/genética , Receptores de Hidrocarburo de Aril/genética , Animales , Gadiformes/genética , Genoma/genética , Filogenia , Xenobióticos/toxicidad
16.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 155-165, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28694077

RESUMEN

Limited knowledge of the molecular evolution of deep-sea fish proteomes so far suggests that a few widespread residue substitutions in cytosolic proteins binding hydrophilic ligands contribute to resistance to the effects of high hydrostatic pressure (HP). Structure-function studies with additional protein systems, including membrane bound proteins, are essential to provide a more general picture of adaptation in these extremophiles. We explored molecular features of HP adaptation in proteins binding hydrophobic ligands, either in lipid bilayers (cytochrome P450 1A - CYP1A) or in the cytosol (the aryl hydrocarbon receptor - AHR), and their partners P450 oxidoreductase (POR) and AHR nuclear translocator (ARNT), respectively. Cloning studies identified the full-length coding sequence of AHR, CYP1A and POR, and a partial sequence of ARNT from Coryphaenoides armatus, an abyssal gadiform fish thriving down to 5000m depth. Inferred protein sequences were aligned with many non-deep-sea homologs to identify unique amino acid substitutions of possible relevance in HP adaptation. Positionally unique substitutions of various physicochemical properties were found in all four proteins, usually at sites of strong-to-absolute residue conservation. Some were in domains deemed important for protein-protein interaction or ligand binding. In addition, some involved removal or addition of beta-branched residues; local modifications of beta-branched residue patterns could be important to HP adaptation. In silico predictions further suggested that some unique substitutions might substantially modulate the flexibility of the polypeptide segment in which they are found. Repetitive motifs unique to the abyssal fish AHR were predicted to be rich in glycosylation sites, suggesting that post-translational changes could be involved in adaptation as well. Recombinant CYP1A and AHR showed functional properties (spectral characteristics, catalytic activity and ligand binding) that demonstrate proper folding at 1atm, indicating that they could be used as deep-sea fish protein models to further evaluate protein function under pressure. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone".


Asunto(s)
Adaptación Fisiológica , Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Sistema Enzimático del Citocromo P-450/química , Proteínas de Peces/química , Gadiformes/metabolismo , Receptores de Hidrocarburo de Aril/química , Secuencia de Aminoácidos , Anfibios , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Sitios de Unión , Aves , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Gadiformes/genética , Expresión Génica , Presión Hidrostática , Mamíferos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reptiles , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
17.
Aquat Toxicol ; 192: 105-115, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28942070

RESUMEN

Non-dioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine receptors (RyR), microsomal Ca2+ channels of broad significance. Teleost fish may be important models for NDL PCB neurotoxicity, and we used sequencing databases to characterize teleost RyR and FK506 binding protein 12 or 12.6kDa (genes FKBP1A; FKBP1B), which promote NDL PCB-triggered Ca2+ dysregulation. Particular focus was placed on describing genes in the Atlantic killifish (Fundulus heteroclitus) genome and searching available RNA-sequencing datasets for single nucleotide variants (SNV) between PCB tolerant killifish from New Bedford Harbor (NBH) versus sensitive killifish from Scorton Creek (SC), MA. Consistent with the teleost whole genome duplication (tWGD), killifish have six RyR genes, corresponding to a and b paralogs of mammalian RyR1, 2 and 3. The presence of six RyR genes was consistent in all teleosts investigated including zebrafish. Killifish have four FKBP1; one FKBP1b and three FKBP1a named FKBP1aa, FKBP1ab, likely from the tWGD and a single gene duplicate FKBP1a3 suggested to have arisen in Atherinomorphae. The RyR and FKBP1 genes displayed tissue and developmental stage-specific mRNA expression, and the previously uncharacterized RyR3, herein named RyR3b, and all FKBP1 genes were prominent in brain. We identified a SNV in RyR3b encoding missense mutation E1458D. In NBH killifish, 57% were heterozygous and 28% were homozygous for this SNV, whereas almost all SC killifish (94%) lacked the variant (n≥39 per population). The outlined sequence differences between mammalian and teleost RyR and FKBP1 together with outlined population differences in SNV frequency may contribute to our understanding of NDL PCB neurotoxicity.


Asunto(s)
Fundulidae/genética , Filogenia , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteína 1A de Unión a Tacrolimus/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Regulación del Desarrollo de la Expresión Génica , Mamíferos , Mutación Missense/genética , Especificidad de Órganos , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Proteína 1A de Unión a Tacrolimus/química
18.
Redox Biol ; 13: 207-218, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28582729

RESUMEN

Redox signaling is important for embryogenesis, guiding pathways that govern processes crucial for embryo patterning, including cell polarization, proliferation, and apoptosis. Exposure to pro-oxidants during this period can be deleterious, resulting in altered physiology, teratogenesis, later-life diseases, or lethality. We previously reported that the glutathione antioxidant defense system becomes increasingly robust, including a doubling of total glutathione and dynamic shifts in the glutathione redox potential at specific stages during embryonic development in the zebrafish, Danio rerio. However, the mechanisms underlying these changes are unclear, as is the effectiveness of the glutathione system in ameliorating oxidative insults to the embryo at different stages. Here, we examine how the glutathione system responds to the model pro-oxidants tert-butylhydroperoxide and tert-butylhydroquinone at different developmental stages, and the role of Nuclear factor erythroid 2-related factor (Nrf) proteins in regulating developmental glutathione redox status. Embryos became increasingly sensitive to pro-oxidants after 72h post-fertilization (hpf), after which the duration of the recovery period for the glutathione redox potential was increased. To determine whether the doubling of glutathione or the dynamic changes in glutathione redox potential are mediated by zebrafish paralogs of Nrf transcription factors, morpholino oligonucleotides were used to knock down translation of Nrf1 and Nrf2 (nrf1a, nrf1b, nrf2a, nrf2b). Knockdown of Nrf1a or Nrf1b perturbed glutathione redox state until 72 hpf. Knockdown of Nrf2 paralogs also perturbed glutathione redox state but did not significantly affect the response of glutathione to pro-oxidants. Nrf1b morphants had decreased gene expression of glutathione synthesis enzymes, while hsp70 increased in Nrf2b morphants. This work demonstrates that despite having a more robust glutathione system, embryos become more sensitive to oxidative stress later in development, and that neither Nrf1 nor Nrf2 alone appear to be essential for the response and recovery of glutathione to oxidative insults.


Asunto(s)
Proteínas del Ojo/metabolismo , Glutatión/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Embrión no Mamífero/metabolismo , Proteínas del Ojo/genética , Factor 2 Relacionado con NF-E2/genética , Factor Nuclear 1 de Respiración/genética , Estrés Oxidativo , Pez Cebra , Proteínas de Pez Cebra/genética
19.
Reprod Toxicol ; 69: 174-186, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28267574

RESUMEN

Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease.


Asunto(s)
Evolución Molecular , Medición de Riesgo , Teratología , Animales , Biología Computacional , Humanos , Filogenia , Biología de Sistemas
20.
PLoS One ; 11(5): e0154208, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27136924

RESUMEN

Some species of butterflyfish have had preyed upon corals for millions of years, yet the mechanism of butterflyfish specialized coral feeding strategy remains poorly understood. Certain butterflyfish have the ability to feed on allelochemically rich soft corals, e.g. Sinularia maxima. Cytochrome P450 (CYP) is the predominant enzyme system responsible for the detoxification of dietary allelochemicals. CYP2-like and CYP3A-like content have been associated with butterflyfish that preferentially consumes allelochemically rich soft corals. To investigate the role of butterflyfish CYP2 and CYP3A enzymes in dietary preference, we conducted oral feeding experiments using homogenates of S. maxima and a toxin isolated from the coral in four species of butterflyfish with different feeding strategies. After oral exposure to the S. maxima toxin 5-episinulaptolide (5ESL), which is not normally encountered in the Hawaiian butterflyfish diet, an endemic specialist, Chaetodon multicinctus experienced 100% mortality compared to a generalist, Chaetodon auriga, which had significantly more (3-6 fold higher) CYP3A-like basal content and catalytic activity. The specialist, Chaetodon unimaculatus, which preferentially feed on S. maxima in Guam, but not in Hawaii, had 100% survival, a significant induction of 8-12 fold CYP3A-like content, and an increased ability (2-fold) to metabolize 5ESL over other species. Computer modeling data of CYP3A4 with 5ESL were consistent with microsomal transformation of 5ESL to a C15-16 epoxide from livers of C. unimaculatus. Epoxide formation correlated with CYP3A-like content, catalytic activity, induction, and NADPH-dependent metabolism of 5ESL. These results suggest a potentially important role for the CYP3A family in butterflyfish-coral diet selection through allelochemical detoxification.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Antozoos/metabolismo , Diterpenos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Geografía , Perciformes/fisiología , Toxinas Biológicas/toxicidad , Animales , Biotransformación/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Compuestos Epoxi/metabolismo , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Perciformes/metabolismo , Análisis de Supervivencia , Toxinas Biológicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...