Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298356

RESUMEN

The infamous "master manipulators"-intracellular bacteria of the genus Wolbachia-infect a broad range of phylogenetically diverse invertebrate hosts in terrestrial ecosystems. Wolbachia has an important impact on the ecology and evolution of their host with documented effects including induced parthenogenesis, male killing, feminization, and cytoplasmic incompatibility. Nonetheless, data on Wolbachia infections in non-terrestrial invertebrates are scarce. Sampling bias and methodological limitations are some of the reasons limiting the detection of these bacteria in aquatic organisms. In this study, we present a new metagenetic method for detecting the co-occurrence of different Wolbachia strains in freshwater invertebrates host species, i.e., freshwater Arthropoda (Crustacea), Mollusca (Bivalvia), and water bears (Tardigrada) by applying NGS primers designed by us and a Python script that allows the identification of Wolbachia target sequences from the microbiome communities. We also compare the results obtained using the commonly applied NGS primers and the Sanger sequencing approach. Finally, we describe three supergroups of Wolbachia: (i) a new supergroup V identified in Crustacea and Bivalvia hosts; (ii) supergroup A identified in Crustacea, Bivalvia, and Eutardigrada hosts, and (iii) supergroup E infection in the Crustacea host microbiome community.


Asunto(s)
Artrópodos , Wolbachia , Animales , Masculino , Wolbachia/genética , Filogenia , Ecosistema , Bacterias , Crustáceos , Simbiosis
2.
PLoS One ; 18(1): e0270386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36630322

RESUMEN

Anhydrobiosis is a desiccation tolerance that denotes the ability to survive almost complete dehydration without sustaining damage. The knowledge on the survival capacity of various tardigrade species in anhydrobiosis is still very limited. Our research compares anhydrobiotic capacities of four tardigrade species from different genera, i.e. Echiniscus testudo, Paramacrobiotus experimentalis, Pseudohexapodibius degenerans and Macrobiotus pseudohufelandi, whose feeding behavior and occupied habitats are different. Additionally, in the case of Ech. testudo, we analyzed two populations: one urban and one from a natural habitat. The observed tardigrade species displayed clear differences in their anhydrobiotic capacity, which appear to be determined by the habitat rather than nutritional behavior of species sharing the same habitat type. The results also indicate that the longer the state of anhydrobiosis lasts, the more time the animals need to return to activity.


Asunto(s)
Desecación , Tardigrada , Animales , Tardigrada/fisiología
3.
Sci Rep ; 11(1): 17969, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504259

RESUMEN

Temporary water bodies, especially vernal pools, are the most sensitive aquatic environments to climate change yet the least studied. Their functioning largely depends on their phytoplankton community structure. This study aimed to determine how temperature and photoperiod length (by simulating inundation in different parts of the year under five climate scenarios) affect the succession and structure of phytoplankton communities soon after inundation. Photoperiod was the most important factor affecting phytoplankton species richness, total abundance and the abundance of taxonomic groups in the course of succession. A long photoperiod (16 h) and a moderate temperature (16 °C) in vernal pool microcosms (late spring inundation after a warm snowless winter) were the most favourable conditions for phytoplankton growth (especially for the main taxonomic groups: chlorophytes and cryptophytes) and species richness. With short photoperiods (inundation in winter) and low temperatures, the communities transformed towards diatoms, euglenoids and cyanobacteria. In line with our predictions, a high temperature (25 °C) favoured a decline in phytoplankton species diversity. Our study shows that climate change will result in seasonal shifts in species abundance or even in their disappearance and, finally, in potential strong changes in the biodiversity and food webs of aquatic ecosystems in the future.

4.
Genome ; 64(10): 951-958, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34015229

RESUMEN

We used high-throughput sequencing of 16S rRNA to test whether tardigrade species are infected with Wolbachia parasites. We applied SILVA and Greengenes databases that allowed taxonomic classification of bacterial sequences to OTUs. The results obtained from both databases differed considerably in the number of OTUs, and only the Greengenes database allowed identification of Wolbachia (infection was also supported by comparison of sequences to NCBI database). The putative bacterial endosymbiont Wolbachia was discovered only in adult eutardigrades, while bacteria identified down to the order Rickettsiales were detected in both eutardigrade eggs and adult specimens. Nevertheless, the frequency of Wolbachia in the bacterial communities of the studied eutardigrades was low. Similarly, in our positive control, i.e., a fairy shrimp Streptocephalus cafer, which was found to be infected with Wolbachia in our previous study using Sanger sequencing, only the Rickettsiales were detected. We also carried out phylogenetic reconstruction using Wolbachia sequences from the SILVA and Greengenes databases, Alphaproteobacteria putative endosymbionts and Rickettsiales OTUs obtained in previous studies on the microbial community of tardigrades, and Rickettsiales and Wolbachia OTUs obtained in the current study. Our discovery of Wolbachia in tardigrades can fuel new research to uncover the specifics of this interaction.


Asunto(s)
Filogenia , Tardigrada/microbiología , Wolbachia , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Ribosómico 16S/genética , Simbiosis , Wolbachia/clasificación
5.
Zool Stud ; 60: e74, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35774259

RESUMEN

Water availability is one of the most important factors for terrestrial life. Terrestrial habitats may periodically become dry, which can be overcome by an organism's capability to undergo anhydrobiosis. In animals, this phenomenon has been reported for invertebrates, with tardigrades being the best-known. However, different tardigrade species appear to significantly differ in their anhydrobiotic abilities. While several studies have addressed this issue, established experimental protocols for tardigrade dehydration differ both within and among species, leading to ambiguous results. Therefore, we apply unified conditions to estimate intra-and interspecies differences in anhydrobiosis ability reflected by the return to active life. We analysed Milnesium inceptum and Ramazzottius subanomalus representing predatory and herbivorous species, respectively, and often co-occur in the same habitat. The results indicated that the carnivorous Mil. inceptum displays better anhydrobiosis survivability than the herbivorous Ram. subanomalus. This tendency to some degree coincides with the time of "waking up" since Mil. inceptum showed first movements and full activity of any first individual later than Ram. subanomalus. The movements of all individuals were however observed to be faster for Mil. inceptum. Differences between the experimental groups varying in anhydrobiosis length were also observed: the longer tun state duration, the more time was necessary to return to activity.

6.
PeerJ ; 6: e6039, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30581663

RESUMEN

Bacterial endosymbionts of aquatic invertebrates remain poorly studied. This is at least partly due to a lack of suitable techniques and primers for their identification. We designed a pair of non-degenerate primers which enabled us to amplify a fragment of ca. 500 bp of the 16S rRNA gene from various known bacterial endosymbiont species. By using this approach, we identified four bacterial endosymbionts, two endoparasites and one uncultured bacterium in seven, taxonomically diverse, freshwater crustacean hosts from temporary waters across a wide geographical area. The overall efficiency of our new WOLBSL and WOLBSR primers for amplification of the bacterial 16S rRNA gene was 100%. However, if different bacterial species from one sample were amplified simultaneously, sequences were illegible, despite a good quality of PCR products. Therefore, we suggest using our primers at the first stage of bacterial endosymbiont identification. Subsequently, genus specific primers are recommended. Overall, in the era of next-generation sequencing our method can be used as a first simple and low-cost approach to identify potential microbial symbionts associated with freshwater crustaceans using simple Sanger sequencing. The potential to detected bacterial symbionts in various invertebrate hosts in such a way will facilitate studies on host-symbiont interactions and coevolution.

7.
PLoS One ; 13(6): e0199609, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29933389

RESUMEN

The cytochrome c oxidase subunit I (cox1) gene is the main mitochondrial molecular marker playing a pivotal role in phylogenetic research and is a crucial barcode sequence. Folmer's "universal" primers designed to amplify this gene in metazoan invertebrates allowed quick and easy barcode and phylogenetic analysis. On the other hand, the increase in the number of studies on barcoding leads to more frequent publishing of incorrect sequences, due to amplification of non-target taxa, and insufficient analysis of the obtained sequences. Consequently, some sequences deposited in genetic databases are incorrectly described as obtained from invertebrates, while being in fact bacterial sequences. In our study, in which we used Folmer's primers to amplify COI sequences of the crustacean fairy shrimp Branchipus schaefferi (Fischer 1834), we also obtained COI sequences of microbial contaminants from Aeromonas sp. However, when we searched the GenBank database for sequences closely matching these contaminations we found entries described as representatives of Gastrotricha and Mollusca. When these entries were compared with other sequences bearing the same names in the database, the genetic distance between the incorrect and correct sequences amplified from the same species was c.a. 65%. Although the responsibility for the correct molecular identification of species rests on researchers, the errors found in already published sequences data have not been re-evaluated so far. On the basis of the standard sampling technique we have estimated with 95% probability that the chances of finding incorrectly described metazoan sequences in the GenBank depend on the systematic group, and variety from less than 1% (Mollusca and Arthropoda) up to 6.9% (Gastrotricha). Consequently, the increasing popularity of DNA barcoding and metabarcoding analysis may lead to overestimation of species diversity. Finally, the study also discusses the sources of the problems with amplification of non-target sequences.


Asunto(s)
Código de Barras del ADN Taxonómico , Cartilla de ADN , ADN Mitocondrial , Complejo IV de Transporte de Electrones/genética , Invertebrados/genética , Animales , Bases de Datos de Ácidos Nucleicos , Filogenia , Reacción en Cadena de la Polimerasa
8.
Exp Appl Acarol ; 68(4): 429-40, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26861069

RESUMEN

Underground nests of Talpa europaea, known as the common mole, are very specific microhabitats, which are also quite often inhabited by various groups of arthropods. Mites from the suborder Uropodina (Acari: Mesostigmata) are only one of them. One could expect that mole nests that are closely located are inhabited by communities of arthropods with similar species composition and structure. However, results of empirical studies clearly show that even nests which are close to each other can be different both in terms of the species composition and abundance of Uropodina communities. So far, little is known about the factors that can cause these differences. The major aim of this study was to identify factors determining species composition, abundance, and community structure of Uropodina communities in mole nests. The study is based on material collected during a long-term investigation conducted in western parts of Poland. The results indicate that the two most important factors influencing species composition and abundance of Uropodina communities in mole nests are nest-building material and depth at which nests are located. Composition of Uropodina communities in nests of moles was also compared with that of other microhabitats (e.g. rotten wood, forest litter, soil) based on data from 4421 samples collected in Poland. Communities of this habitat prove most similar to these of open areas, especially meadows, as well as some forest types.


Asunto(s)
Ácaros/fisiología , Topos/parasitología , Animales , Ecosistema , Europa (Continente) , Femenino , Masculino , Especificidad de la Especie
9.
Ecotoxicol Environ Saf ; 118: 103-111, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25919341

RESUMEN

The contents of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) were analysed in the bottom sediments of 30 small, astatic ponds located in the agricultural landscape of Western Poland. The samples were collected from 118 stations located in patches of four vegetation types. Relationships between the contents of particular elements and four groups of factors (geomorphology, hydroperiod, water quality and vegetation) were tested using Redundancy Analysis (RDA). The most important factors influencing the heavy metal contents were the maximum depth and area of the pond, its hydroperiod, water pH and conductivity values. In general, low quantities of heavy metals were recorded in the sediments of kettle-like ponds (small but located in deep depressions) and high in water bodies of the shore-bursting type (large but shallow). Moreover, quantities of particular elements were influenced by the structure of the vegetation covering the pond. Based on the results, we show which types of astatic ponds are most exposed to contamination and suggest some conservation practices that may reduce the influx of heavy metals.


Asunto(s)
Sedimentos Geológicos/química , Metales Pesados/análisis , Estanques/análisis , Estanques/química , Contaminantes Químicos del Agua/análisis , Biodiversidad , Monitoreo del Ambiente , Plantas , Polonia , Calidad del Agua , Tiempo (Meteorología)
10.
Zoology (Jena) ; 117(3): 207-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24657201

RESUMEN

Recent molecular studies have indicated a close relationship between Crustacea and Hexapoda and postulated their unification into the Pancrustacea/Tetraconata clade. Certain molecular analyses have also suggested that the crustacean lineage, which includes the Branchiopoda, might be the sister group of Hexapoda. We test this hypothesis by analyzing the structure of the ovary and the ultrastructural features of oogenesis in two branchiopod species, Cyzicus tetracerus and Lynceus brachyurus, representing two separate orders, Spinicaudata and Laevicaudata, respectively. The female gonads of these species have not been investigated before. Here, we demonstrate that in both studied species the ovarian follicles develop inside characteristic ovarian protrusions and comprise a germline cyst surrounded by a simple somatic (follicular) epithelium, supported by a thin basal lamina. Each germline cyst consists of one oocyte and three supporting nurse cells, and the oocyte differentiates relatively late during ovarian follicle development. The synthesis of oocyte reserve materials involves rough endoplasmic reticulum and Golgi complexes. The follicular cells are penetrated by a complex canal system and there is no external epithelial sheath covering the ovarian follicles. The structure of the ovary and the ultrastructural characteristics of oogenesis are not only remarkably similar in both Cyzicus and Lynceus, but also share morphological similarities with Notostraca as well as the basal hexapods Campodeina and Collembola. Possible phylogenetic implications of these findings are discussed.


Asunto(s)
Crustáceos/clasificación , Crustáceos/ultraestructura , Oogénesis , Filogenia , Animales , Artrópodos/ultraestructura , Crustáceos/crecimiento & desarrollo , Femenino , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA