Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 3(4)2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25896979

RESUMEN

We sought to characterize a minor renal cryoinjury that allows investigation into renal damage processes and subsequent endogenous repair mechanisms. To achieve this, we induced a small cryoinjury to mice, in which the transient superficial application of a liquid nitrogen-cooled cryoprobe to the exposed kidney induces a localized lesion that did not impair renal function. The resulting cryoinjury was examined by immunohistochemistry and Laser-Doppler flowmetry. Within hours of cryoinjury induction, tubular and vascular necrotic damage was observed, while blood flow in the directly injured area was reduced by 65%. The injured area demonstrated a peak in tubular and perivascular cell proliferation at 4 days postinjury, while apoptosis and fibrosis peaked at day 7. Infiltration of macrophages into the injury was first observed at day 4, and peaked at day 7. Vascular density in the direct injured area was lowest at day 7. As compared to the direct injured area, the (peripheral) penumbral region surrounding the directly injured area demonstrated enhanced cellular proliferation (2.5-6-fold greater), vascular density (1.6-2.9 fold greater) and blood perfusion (twofold greater). After 4 weeks, the area of damage was reduced by 73%, fibrosis decreased by 50% and blood flow in the direct injured area was reestablished by 63% with almost complete perfusion restoration in the injury's penumbral region. In conclusion, kidney cryoinjury provides a flexible facile model for the study of renal damage and associated endogenous repair processes.

2.
Kidney Int ; 87(1): 95-108, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24940804

RESUMEN

High-mobility group box 1 (HMGB1) undergoes acetylation, nuclear-to-cytoplasmic translocation, and release from stressed kidneys, unleashing a signaling cascade of events leading to systemic inflammation. Here, we tested whether the deacetylase activity of Sirtuin1 (SIRT1) participates in regulating nuclear retention of HMGB1 to ultimately modulate damage signaling initiated by HMGB1 secretion during stress. When immunoprecipitated acetylated HMGB1 was incubated with SIRT1, HMGB1 acetylation decreased by 57%. Proteomic analysis showed that SIRT1 deacetylates HMGB1 at four lysine residues (55, 88, 90, and 177) within the proinflammatory and nuclear localization signal domains of HMGB1. Genetic ablation or pharmacological inhibition of SIRT1 in endothelial cells increased HMGB1 acetylation and translocation. In vivo, deletion of SIRT1 reduced nuclear HMGB1 while increasing its acetylation and release into circulation during basal and ischemic conditions, causing increased renal damage. Conversely, resveratrol pretreatment led to decreased HMGB1 acetylation, its nuclear retention, decreased systemic release, and reduced tubular damage. Thus, a vicious cycle is set into motion in which the inflammation-induced repression of SIRT1 disables deacetylation of HMGB1, facilitates its nuclear-to-cytoplasmic translocation, and systemic release, thereby maintaining inflammation.


Asunto(s)
Proteína HMGB1/metabolismo , Sirtuina 1/fisiología , Acetilación , Animales , Células Cultivadas , Células Endoteliales , Humanos , Ratones
3.
Am J Physiol Renal Physiol ; 303(6): F873-85, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22759395

RESUMEN

Factors that initiate cellular damage and trigger the inflammatory response cascade and renal injury are not completely understood after renal ischemia-reperfusion injury (IRI). High-mobility group box-1 protein (HMGB1) is a damage-associated molecular pattern molecule that binds to chromatin, but upon signaling undergoes nuclear-cytoplasmic translocation and release from cells. Immunohistochemical and Western blot analysis identified HMGB1 nuclear-cytoplasmic translocation and release from renal cells (particularly vascular and tubular cells) into the venous circulation after IRI. Time course analysis indicated HMGB1 release into the venous circulation progressively increased parallel to increased renal ischemic duration. Ethyl pyruvate (EP) treatment blocked H(2)O(2) (oxidative stress)-induced HMGB1 release from human umbilical vein endothelial cells in vitro, and in vivo resulted in nuclear retention and significant blunting of HMGB1 release into the circulation after IRI. EP treatment before IRI improved short-term serum creatinine and albuminuria, proinflammatory cyto-/chemokine release, and long-term albuminuria and fibrosis. The renoprotective effect of EP was abolished when exogenous HMGB1 was injected, suggesting EP's therapeutic efficacy is mediated by blocking HMGB1 translocation and release. To determine the independent effects of circulating HMGB1 after injury, exogenous HMGB1 was administered to healthy animals at pathophysiological dose. HMGB1 administration induced a rapid surge in systemic circulating cyto-/chemokines (including TNF-α, eotaxin, G-CSF, IFN-γ, IL-10, IL-1α, IL-6, IP-10, and KC) and led to mobilization of bone marrow CD34+Flk1+ cells into the circulation. Our results indicate that increased ischemic duration causes progressively enhanced HMGB1 release into the circulation triggering damage/repair signaling, an effect inhibited by EP because of its ability to block HMGB1 nuclear-cytoplasmic translocation.


Asunto(s)
Proteínas del Grupo de Alta Movilidad/metabolismo , Riñón/irrigación sanguínea , Daño por Reperfusión/metabolismo , Proteínas Represoras/metabolismo , Animales , Células de la Médula Ósea/fisiología , Creatinina/sangre , Citocinas/sangre , Proteínas del Grupo de Alta Movilidad/sangre , Proteínas del Grupo de Alta Movilidad/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Piruvatos/farmacología , Proteínas Represoras/sangre , Proteínas Represoras/farmacología
4.
Dev Biol ; 289(1): 44-54, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16325173

RESUMEN

Vasculogenesis, the de novo growth of the primary vascular network from initially dispersed endothelial cells, is the first step in the development of the circulatory system in vertebrates. In the first stages of vasculogenesis, endothelial cells elongate and form a network-like structure, called the primary capillary plexus, which subsequently remodels, with the size of the vacancies between ribbons of endothelial cells coarsening over time. To isolate such intrinsic morphogenetic ability of endothelial cells from its regulation by long-range guidance cues and additional cell types, we use an in vitro model of human umbilical vein endothelial cells (HUVEC) in Matrigel. This quasi-two-dimensional endothelial cell culture model would most closely correspond to vasculogenesis in flat areas of the embryo like the yolk sac. Several studies have used continuum mathematical models to explore in vitro vasculogenesis: such models describe cell ensembles but ignore the endothelial cells' shapes and active surface fluctuations. While these models initially reproduce vascular-like morphologies, they eventually stabilize into a disconnected pattern of vascular "islands." Also, they fail to reproduce temporally correct network coarsening. Using a cell-centered computational model, we show that the endothelial cells' elongated shape is key to correct spatiotemporal in silico replication of stable vascular network growth. We validate our simulation results against HUVEC cultures using time-resolved image analysis and find that our simulations quantitatively reproduce in vitro vasculogenesis and subsequent in vitro remodeling.


Asunto(s)
Vasos Sanguíneos/embriología , Diferenciación Celular , Células Endoteliales/citología , Modelos Biológicos , Vasos Sanguíneos/citología , Células Cultivadas , Factores Quimiotácticos/metabolismo , Simulación por Computador , Células Endoteliales/metabolismo , Humanos , Cordón Umbilical/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...