Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Environ Mol Mutagen ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828778

RESUMEN

Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.

2.
Environ Mol Mutagen ; 65(1-2): 67-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525651

RESUMEN

Genotoxicity of styrene monomer was evaluated in male Fischer 344 rats using the alkaline comet assay for DNA damage, micronucleus assay for cytogenetic damage and the Pig-a assay for gene mutations. In a dose range finding (DRF) study, styrene was administered by oral gavage in corn oil for 28 consecutive days at 0, 100, 500, and 1000 mg/kg/day. The bioavailability of styrene was confirmed in the DRF by measuring its plasma levels at approximately 7- or 15-min following dosing. The 1000 mg/kg/day group exceeded the maximum tolerated dose based on body weight and organ weight changes and signs of central nervous system depression. Based on these findings, doses of 0, 100, 250, and 500 mg/kg/day (for 28 or 29 days) were selected for the genotoxicity assays. Animals were sacrificed 3-4 h after treatment on Day 28 or 29 for assessing various genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in peripheral blood erythrocytes. The comet assay was conducted in the glandular stomach, duodenum, liver, lung, and kidney. These studies were conducted in accordance with the relevant OECD test guidelines. Oral administration of styrene did not lead to genotoxicity in any of the investigated endpoints. The adequacy of the experimental conditions was assured by including animals treated by oral gavage with the positive control chemicals ethyl nitrosourea and ethyl methane sulfonate. Results from these studies supplement to the growing body of evidence suggesting the lack of in vivo genotoxic potential for styrene.


Asunto(s)
Daño del ADN , Estireno , Ratas , Masculino , Animales , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Estireno/toxicidad , Eritrocitos , Ensayo Cometa/métodos , Pruebas de Micronúcleos/métodos , Pruebas de Mutagenicidad/métodos
3.
Environ Mol Mutagen ; 64(5): 282-290, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042435

RESUMEN

Male B6C3F1 mice were administered styrene monomer by oral gavage for 29 consecutive days at dose levels of 0, 75, 150, or 300 mg/kg/day. The highest dose level represented the maximum tolerated dose based on findings in a 28-day dose range-finding study, in which the bioavailability of orally administered styrene was also confirmed. The positive control group received ethyl nitrosourea (ENU; 51.7 mg/kg/day) on Study Days 1-3 and ethyl methanesulfonate (EMS; 150 mg/kg/day) on Study Days 27-29 by oral gavage. Approximately 3 h following the final dose, blood was collected to assess erythrocyte Pig-a mutant and micronucleus frequencies. DNA strand breakage was assessed in glandular stomach, duodenum, kidney, liver, and lung tissues using the alkaline comet assay. The %tail DNA for stomach, liver, lung, and kidney in the comet assay among the styrene-treated groups was neither significantly different from the respective vehicle controls nor was there any dose-related increasing trend in any of the tissues; results for duodenum were interpreted to be inconclusive because of technical issues. The Pig-a and micronucleus frequencies among styrene-treated groups also did not show significant increases relative to the vehicle controls and there was also no evidence for a dose-related increasing trend. Thus, orally administered styrene did not induce DNA damage, mutagenesis, or clastogenesis/aneugenesis in these Organization of Economic Co-operation and Development test guideline-compliant genotoxicity studies. Data from these studies can contribute to the overall assessment of genotoxic hazard and risk posed to humans potentially exposed to styrene.


Asunto(s)
Daño del ADN , Estireno , Animales , Masculino , Ratones , Ensayo Cometa/métodos , Eritrocitos , Pruebas de Micronúcleos/métodos , Estireno/toxicidad
4.
Environ Mol Mutagen ; 64(4): 244-249, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841967

RESUMEN

Ethyl tertiary-butyl ether (ETBE) is a fuel oxygenate used for the efficiency of motor vehicle fuels and their octane ratings. ETBE has been reported to induce liver adenomas in male rats in a 2-year bioassay at the highest inhalation concentration tested of 5000 ppm. To investigate the potential mutagenicity of ETBE in the liver, male Big Blue Fischer 344 rats were exposed for 28 consecutive days (6 h/day) to 0, 500, 1500, and 5000 ppm ETBE. The treated rats were sacrificed 3 days post-exposure and the frequencies of cII mutants were evaluated in the liver and bone marrow tissues. The mutant frequency (MF) of the liver in the negative control group was 36.3 × 10-6 and this value was not significantly different in ETBE-exposed animals (39.4, 37.3, and 45.9 × 10-6 in 500, 1500, and 5000 ppm groups, respectively). In the bone marrow, the mean MF in the negative control was 32.9 × 10-6 which was not different from the means of the exposed groups (33.8, 22.6, and 32.0 × 10-6 for groups exposed to 500, 1500 and 5000 ppm, respectively). These data, along with consistent negative response reported in the literature for other apical genotoxicity endpoints informs that mutagenicity is not likely the initial key event in the mode of action for ETBE-induced hepatocarcinogenesis in the rat.


Asunto(s)
Mutágenos , Neoplasias , Ratas , Masculino , Animales , Ratas Transgénicas , Exposición por Inhalación/efectos adversos , Ratas Endogámicas F344 , Éteres
5.
Environ Mol Mutagen ; 64(1): 26-38, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36314072

RESUMEN

3-Chloroallyl alcohol (3-CAA) can be found in the environment following the application of plant protection products. 3-CAA is formed in groundwater following the injection of 1,3-dichloropropene, a fumigant used to control nematodes. 3-CAA is also formed, in leafy crops, as a glycoside conjugate following application of the herbicide, clethodim. Human exposure may occur from groundwater used as drinking water or through dietary consumption. To characterize 3-CAA's potential to cause genotoxicity in mammals, in vitro and in vivo studies were conducted. 3-CAA was negative in an Ames test and positive in a mouse lymphoma forward mutation assay. 3-CAA was negative in an acute in vivo CD-1 mouse bone marrow micronucleus assay when administered up to a dose level of 125 mg/kg/day for two consecutive days. In a combined gene mutation assay and erythrocyte micronucleus assay, using transgenic Big Blue® Fischer 344 rats, 3-CAA was administered via drinking water at targeted dose levels of 0, 10, 30, and 100 mg/kg/day for 29 days. Peripheral blood samples, collected at the end of treatment, were analyzed for micronucleus induction in reticulocytes using flow cytometry. Liver and bone marrow samples, collected 2 days after the termination of the treatment, were analyzed for the induction of mutations at the cII locus. 3-CAA did not induce an increase in mutant frequency or micronuclei under the experimental conditions. In conclusion, the mutagenic response observed in the in vitro mouse lymphoma assay is not confirmed in the whole animal. 3-CAA is not considered to pose a mutagenic risk.


Asunto(s)
Agua Potable , Linfoma , Ratas , Ratones , Humanos , Animales , Mutágenos/toxicidad , Pruebas de Micronúcleos , Daño del ADN , Ratas Endogámicas F344 , Pruebas de Mutagenicidad , Mamíferos
6.
J Toxicol Environ Health B Crit Rev ; 25(4): 135-161, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35291916

RESUMEN

Methyl-tert-butyl ether (MTBE) is a fuel oxygenate used in non-United States geographies. Multiple health reviews conclude that MTBE is not a human-relevant carcinogen, and this review provides updated mode of action (MOA), exposure, dosimetry and risk perspectives supporting those conclusions. MTBE is non-genotoxic and has large margins of exposure between blood concentrations at the overall rat 400 ppm inhalation NOAEL and blood concentrations in typical workplace or general population exposures. Non-cancer and threshold cancer hazard quotients range from a high of 0.046 for fuel-pump gasoline station attendants and are 100-1,000-fold lower for general population exposures. Cancer risks conservatively assuming genotoxicity for these same scenarios are all less than 1 × 10-6. The onset of MTBE nonlinear toxicokinetics (TK) in rats at inhalation exposures less than 3,000 ppm, a dose that is also not practically achievable in fuel-use scenarios, indicates that high-dose specific male rat kidney and testes (3,000 and 8,000 ppm) and female mouse liver tumors (8000 ppm) are not quantitatively relevant to humans. Mode of action analyses also indicate MTBE male rat kidney tumors, and lesser so female mouse liver tumors, are not qualitatively relevant to humans. Thus, an integrated analysis of the toxicology, exposure/dosimetry, TK, and MOA data indicates that MTBE presents minimal human cancer and non-cancer risks.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias Hepáticas , Éteres Metílicos , Contaminantes Atmosféricos/toxicidad , Animales , Bioensayo , Carcinógenos/toxicidad , Femenino , Gasolina , Humanos , Masculino , Éteres Metílicos/farmacocinética , Éteres Metílicos/toxicidad , Ratones , Ratas , Roedores , Toxicocinética
7.
Mutat Res Rev Mutat Res ; 787: 108364, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34083043

RESUMEN

The purpose of this review is to evaluate the literature on the genotoxicity of cumene (CAS # 98-82-8) and to assess the role of mutagenicity, if any, in the mode of action for cumene-induced rodent tumors. The studies reviewed included microbial mutagenicity, DNA damage/ repair, cytogenetic effects, and gene mutations. In reviewing these studies, attention was paid to their conformance to applicable OECD test guidelines which are considered as internationally recognized standards for performing these assays. Cumene was not a bacterial mutagen and did not induce Hprt mutations in CHO cell cultures. In the primary rat hepatocyte cultures, cumene induced unscheduled DNA synthesis in one study but this response could not be reproduced in an independent study using a similar protocol. In a study that is not fully compliant to the current OECD guideline, no increase in chromosomal aberrations was observed in CHO cells treated with cumene. The weight of the evidence (WoE) from multiple in vivo studies indicates that cumene is not a clastogen or aneugen. The weak positive response in an in vivo comet assay in the rat liver and mouse lung tissues is of questionable significance due to several study deficiencies. The genotoxicity profile of cumene does not match that of a classic DNA-reactive molecule and the available data does not support a conclusion that cumene is an in vivo mutagen. As such, mutagenicity does not appear to be an early key event in cumene-induced rodent tumors and alternate hypothesized non-mutagenic modes-of-action are presented. Further data are necessary to rule in or rule out a particular MoA.


Asunto(s)
Daño del ADN/fisiología , Animales , Células CHO , Ensayo Cometa , Cricetulus , Daño del ADN/genética , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Pruebas de Mutagenicidad , Mutación/genética , Ratas
8.
Environ Mol Mutagen ; 62(3): 227-237, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33608913

RESUMEN

The rodent Pig-a assay is a flow cytometric, phenotype-based method used to measure in vivo somatic cell mutation. An Organization for Economic Co-operation and Development (OECD) test guideline is currently being developed to support routine use of the assay for regulatory purposes (OECD project number 4.93). This article provides advice on best practices for designing and conducting rodent Pig-a studies in support of evaluating test substance safety, with a focus on the rat model. Various aspects of assay conduct, including laboratory proficiency, minimum number of animals per dose group, preferred treatment and blood sampling schedule, and statistical analysis are described.


Asunto(s)
Pruebas de Mutagenicidad , Mutágenos/farmacología , Mutación/genética , Reticulocitos/efectos de los fármacos , Animales , Bioensayo , Citometría de Flujo , Masculino , Mutágenos/toxicidad , Ratas , Reticulocitos/patología , Roedores/genética
9.
Mutagenesis ; 35(5): 437-443, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33511997

RESUMEN

1,3-Dichloropropene (1,3-D; CAS No. 542-75-6) is a soil fumigant used for the control of nematodes in agriculture. There is an extensive database on the genotoxicity of 1,3-D and many of the published studies are confounded by the presence of mutagenic stabilisers in the test substance. Mixed results were obtained in the in vitro assays, often due to the purity of the 1,3-D sample tested. In order to get further clarity, the mutagenic potential of 1,3-D was investigated in vivo in the transgenic Big Blue rodent models. Inhalation exposure of 150 ppm 1,3-D (×2.5 tumourigenic dose) to transgenic male B6C3F1 mice did not induce lacI mutations in either the lung (tumour target tissue) or liver. Similarly, dietary administration of 1,3-D up to 50 mg/kg/day to transgenic male Fischer 344 rats did not increase the cII mutant frequency in either the liver (tumour target) or kidney. These results, along with other available in vivo data, including the absence of DNA adducts and clastogenic/aneugenic potential, support the conclusion that 1,3-D is efficiently detoxified in vivo and, as such, does not pose a mutagenic hazard or risk.


Asunto(s)
Compuestos Alílicos/farmacología , Hidrocarburos Clorados/farmacología , Mutagénesis/efectos de los fármacos , Mutágenos/farmacología , Plaguicidas/farmacología , Compuestos Alílicos/toxicidad , Animales , Aductos de ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrocarburos Clorados/toxicidad , Represoras Lac/genética , Ratones , Ratones Transgénicos , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Mutación/efectos de los fármacos , Plaguicidas/efectos adversos , Ratas , Ratas Endogámicas F344
10.
Environ Mol Mutagen ; 61(1): 84-93, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31301246

RESUMEN

Assessment of a chemical's potential to cause permanent changes in the genetic code has been a common practice in the industry and regulatory settings for decades. Furthermore, the genetic toxicity battery of tests has typically been employed during the earliest stages of the research and development programs of new product development. A positive outcome from such battery has a major impact on the chemical's utility, industrial hygiene, product stewardship practices, and product life cycle analysis, among many other decisions that need to be taken by the industry, even before the registration of a chemical is undertaken. Under the prevailing regulatory paradigm, the dichotomous (yes/no) evaluation of the chemical's genotoxic potential leads to a conservative, linear no-threshold (LNT) risk assessment, unless compelling and undeniable data to the contrary can be provided to satisfy regulators, typically in a number of different global jurisdictions. With the current advent of predictive methods, new testing paradigms, mode-of-action/adverse outcome pathways, and quantitative risk assessment approaches, various stakeholders are starting to employ these state-of-the-science methodologies to further the conversation on decision making and advance the regulatory paradigm beyond the dominant LNT status quo. This commentary describes these novel methodologies, relevant biological responses, and how these can affect internal and regulatory risk assessment approaches. Environ. Mol. Mutagen. 61:84-93, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Mutación/efectos de los fármacos , Animales , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Humanos , Medición de Riesgo/métodos , Transducción de Señal/efectos de los fármacos
11.
Environ Mol Mutagen ; 61(3): 300-315, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31633836

RESUMEN

Tricyclazole (8-methyl-[1,2,4]triazolo[3,4-b][1,3]benzothiazole) is a fungicide used globally on rice for treatment of the seasonal rice blast disease. Human exposure to this fungicide can occur via dietary and nondietary routes. In a battery of in vitro assays, tricyclazole did not induce gene mutations in bacteria (Ames test) or at the Hprt locus of CHO cells. It was also negative for the induction of micronuclei in human lymphocyte cultures and unscheduled DNA synthesis (UDS) in primary rat hepatocyte. Paradoxically, tricyclazole induced a mutagenic response at the Tk locus of the mouse lymphoma L5178Ycells (MLA), which occurred equally among small/large colony phenotypes. Selection of preexisting mutants leading to a false-positive response in the MLA was ruled out in follow-up experiments. In vivo, tricyclazole was negative in the rat liver UDS assay, mouse bone micronucleus test and a transgenic (MutaMouse) gene mutation assay in glandular stomach, liver, and kidney. Other supporting evidence for the lack of genotoxicity for tricyclazole comes from an in vivo study for sister chromatid exchanges in Chinese hamsters, and a dominant lethal test in the male germ cells of mice. The combined evidence from the genotoxicity studies together with the evidence from toxicokinetic, carcinogenicity, developmental, and reproductive toxicity studies confirm that mutagenicity does not occur in relevant in vivo systems. Data were also compared to potential animal and human exposure, mechanistic data on biological targets and data on analogues, confirming adequacy of the available data for hazard identification and risk assessment. Environ. Mol. Mutagen. 61:300-315, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Fungicidas Industriales/toxicidad , Mutágenos/toxicidad , Tiazoles/toxicidad , Animales , ADN/genética , Daño del ADN/efectos de los fármacos , Humanos , Mutagénesis/efectos de los fármacos , Pruebas de Mutagenicidad/métodos
12.
Environ Mol Mutagen ; 61(1): 34-41, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31600846

RESUMEN

Mutations induced in somatic cells and germ cells are responsible for a variety of human diseases, and mutation per se has been considered an adverse health concern since the early part of the 20th Century. Although in vitro and in vivo somatic cell mutation data are most commonly used by regulatory agencies for hazard identification, that is, determining whether or not a substance is a potential mutagen and carcinogen, quantitative mutagenicity dose-response data are being used increasingly for risk assessments. Efforts are currently underway to both improve the measurement of mutations and to refine the computational methods used for evaluating mutation data. We recommend continuing the development of these approaches with the objective of establishing consensus regarding the value of including the quantitative analysis of mutation per se as a required endpoint for comprehensive assessments of toxicological risk. Environ. Mol. Mutagen. 61:34-41, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Animales , Carcinógenos/toxicidad , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación/efectos de los fármacos , Medición de Riesgo
13.
Environ Mol Mutagen ; 61(1): 94-113, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31709603

RESUMEN

We recently published a next generation framework for assessing the risk of genomic damage via exposure to chemical substances. The framework entails a systematic approach with the aim to quantify risk levels for substances that induce genomic damage contributing to human adverse health outcomes. Here, we evaluated the utility of the framework for assessing the risk for industrial chemicals, using the case of benzene. Benzene is a well-studied substance that is generally considered a genotoxic carcinogen and is known to cause leukemia. The case study limits its focus on occupational and general population health as it relates to benzene exposure. Using the framework as guidance, available data on benzene considered relevant for assessment of genetic damage were collected. Based on these data, we were able to conduct quantitative analyses for relevant data sets to estimate acceptable exposure levels and to characterize the risk of genetic damage. Key observations include the need for robust exposure assessments, the importance of information on toxicokinetic properties, and the benefits of cheminformatics. The framework points to the need for further improvement on understanding of the mechanism(s) of action involved, which would also provide support for the use of targeted tests rather than a prescribed set of assays. Overall, this case study demonstrates the utility of the next generation framework to quantitatively model human risk on the basis of genetic damage, thereby enabling a new, innovative risk assessment concept. Environ. Mol. Mutagen. 61:94-113, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Asunto(s)
Benceno/toxicidad , Carcinógenos/toxicidad , Mutagénesis/efectos de los fármacos , Mutágenos/toxicidad , Animales , Benceno/metabolismo , Carcinógenos/metabolismo , Daño del ADN/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Leucemia/inducido químicamente , Leucemia/genética , Pruebas de Mutagenicidad/métodos , Mutágenos/metabolismo , Exposición Profesional/efectos adversos , Medición de Riesgo/métodos
14.
Artículo en Inglés | MEDLINE | ID: mdl-31708076

RESUMEN

Assays for gene mutations in cultured mammalian cells, i.e., Mammalian Cell Gene Mutation (MCGM) assays, are widely used in genetic toxicology laboratories worldwide; over the past four decades they have been commonly employed in safety assessment studies, and studies designed to address hypothesis-driven research questions. Despite many advances in the fields of cellular and molecular biology over the past four decades, the MCGM assays commonly used for regulatory evaluations continue to be those developed in the 1970s, including assays that enumerate induced mutations at the hprt or tk loci of several commonly used cell lines. Consequently, the Steering Committee of the 7th International Workshops on Genotoxicity Testing (IWGT) convened a working group (WG) to critically assess the state-of-the-science in regards to the current and emerging tools for the detection of mutagens using cultured mammalian cells. The WG was divided into four sub-groups that evaluated the state-of- the-science with respect to the: (1) in vitro Pig-a gene mutation assay, (2) in vitro assays based on cells from transgenic rodents, (3) technologies and innovations to improve MCGM assays using TK6 cells, and (4) novel and emerging technologies and approaches for detection and enumeration of gene mutations in mammalian cells. Each of these sub-groups critically reviewed the scientific literature, along with other unpublished data, to develop consensus statements on the status of the test systems in their respective focus areas. These reviews, with their associated consensus statements, are presented in the accompanying works by Bemis and Heflich., White et al., Honma et al., and Evans et al. The MCGM assay WG, in consultation with the entire IWGT, formulated consensus statements regarding the overall utility of MCGM assays for identification and assessment of mutagenic hazard.


Asunto(s)
Mutación , Animales , Consenso , Humanos , Técnicas In Vitro , Pruebas de Mutagenicidad
15.
Methods Mol Biol ; 2031: 3-28, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31473952

RESUMEN

The in vitro mouse lymphoma cell assay (MLA) is one of the most widely practiced assays in genetic toxicology. MLA detects forward mutations at the thymidine kinase (Tk) locus of the L5178Y (Tk+/- -3.7.2C) cell line derived from a mouse thymic lymphoma. This assay is capable of detecting a wide range of genetic events including point mutations, deletions and multilocus, chromosomal rearrangements, mitotic recombination and nondisjunction. There are two equally accepted versions of the assay, one using soft agar cloning and the second method using liquid media cloning in 96-microwell plates. There are two morphologically distinct types of mutant colonies recovered in the MLA; small and large colony mutants. The induction of small colony mutants is associated with chemicals inducing gross chromosomal aberrations, whereas the induction of large mutant colonies is generally associated with chemicals inducing point mutations. The source and karyotype of the cell line as well as the culture conditions are important variables that could influence the assay performance. The assay when performed according to the standards recommended by the International Workshops on Genotoxicity Testing (IWGT) and the Organization of Economic Cooperation and Development Test Guideline 490 is capable of providing valuable genotoxicity hazard information as part of the overall safety assessment process of various classes of test substances.


Asunto(s)
Linfoma/genética , Pruebas de Mutagenicidad/métodos , Mutación , Timidina Quinasa/genética , Animales , Línea Celular Tumoral , Sitios Genéticos/efectos de los fármacos , Ratones , Mutación/efectos de los fármacos
16.
Neurotoxicology ; 73: 258-264, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30980846

RESUMEN

Traditional approaches (e.g., neurobehavior, neuropathology) can detect alterations in apical endpoints indicative of developmental neurotoxicity (DNT). However, there is an increasing desire to understand mode-of-action (MOA) for DNT effects; thus, this short communication describes initial work on a neuronal differentiation assay. Basically, our laboratory used the human NT2/D1 cell line to develop an assay to evaluate toxicants for effects on all-trans retinoic acid (RA)-induced neuronal differentiation. Based on literature reports, we selected a neuronal protein, neuronal class III ß-tubulin (ß3-tubulin), as a marker of differentiation. For this assay, cultured RA-treated NT2 cells were trypsinized to individual cells, methanol fixed, and labeled with a ß3-tubulin specific monoclonal antibody (TUJ1). Characterization studies using 100,000 cells/sample showed that NT2 cells had appreciable expression of ß3-tubulin starting around day 7 of the differentiation process with a peak expression noted around day 12. Methylmercury, 22(R)-hydroxycholesterol, N-(4-hydroxyphenol)retinamide (4HPR), and 9-cis retinoic acid were selected as initial test compounds. Of these, only 9-cis RA, which is known to affect the RA pathway, was positive for specific impacts on differentiation. These results demonstrate the feasibility of using a flow cytometry method targeting specific cellular biomarkers for evaluating effects on neuronal differentiation. Additional assays are needed to detect compounds targeting other (non-RA) neuronal differentiation pathways. Ultimately, a battery of in vitro assays would be needed to evaluate the potential MOAs involved in altered neuronal differentiation.


Asunto(s)
Alitretinoína/toxicidad , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Pruebas de Toxicidad , Tretinoina/farmacología , Biomarcadores/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fenretinida/toxicidad , Citometría de Flujo , Humanos , Hidroxicolesteroles/toxicidad , Compuestos de Metilmercurio/toxicidad , Neuronas/metabolismo , Neuronas/patología , Medición de Riesgo , Transducción de Señal , Factores de Tiempo , Tubulina (Proteína)/metabolismo
17.
Environ Mol Mutagen ; 60(1): 47-55, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30264522

RESUMEN

The rodent blood Pig-a assay has been undergoing international validation for use as an in vivo hematopoietic cell gene mutation assay, and given the promising results an Organization for Economic Co-operation and Development (OECD) Test Guideline is currently under development. Enthusiasm for the assay stems in part from its alignment with 3Rs principles permitting combination with other genotoxicity endpoint(s) and integration into repeat-dose toxicology studies. One logistical requirement and experimental design limitation has been that blood samples required antibody labeling and flow cytometric analysis within one week of collection. In the current report, we describe the performance of freeze-thaw reagents that enable storage and subsequent labeling and analysis of rat blood samples for at least seven months. Data generated from three laboratories are presented that demonstrate rat erythrocyte recoveries in the range of 80-90%. Despite some loss of erythrocytes, Pearson coefficients and Bland-Altman analyses based on fresh blood vs. frozen/thawed matched pairs indicate that mutant cell and reticulocyte frequencies are not significantly affected, as the measurements are highly correlated and exhibit low bias. Collectively, these data support the effectiveness and suitability of a freeze-thaw procedure that endows the assay with several new advantageous characteristics that include: flexibility in scheduling personnel/instrumentation; reliability when shipping samples from in-life facilities to analytical sites; 3Rs-friendly, as blood from positive control animals can be stored frozen to serve as analytical controls; and ability to defer a decision to generate Pig-a data until more toxicological information becomes available on a test substance. Environ. Mol. Mutagen. 60:47-55, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Conservación de la Sangre/métodos , Carboplatino/toxicidad , Eritrocitos/efectos de los fármacos , Etilnitrosourea/toxicidad , Glicosilfosfatidilinositoles/genética , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Reticulocitos/efectos de los fármacos , Animales , Criopreservación/métodos , Eritrocitos/citología , Femenino , Citometría de Flujo/métodos , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Reticulocitos/citología
18.
Toxicol Rep ; 4: 586-597, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29159133

RESUMEN

Nitrapyrin, a nitrification inhibitor, produces liver tumors in mice at high doses. Several experiments were performed to investigate molecular, cellular, and apical endpoints to define the key events leading to the tumor formation. These data support a mode-of-action (MoA) characterized by constitutive androstane receptor (CAR) nuclear receptor activation, increased hepatocellular proliferation leading to hepatocellular foci and tumor formation. Specifically, nitrapyrin induced a dose-related increase in the Cyp2b10/CAR-associated transcript and protein. Interestingly, the corresponding enzyme activity (7-pentoxyresorufin-O-dealkylase (PROD) was not enhanced due to nitrapyrin-mediated suicide inhibition of PROD activity. Nitrapyrin exposure elicited a clear dose-responsive increase in hepatocellular proliferation in wild-type mice, but not in CAR knock-out mice, informing that CAR activation is an obligatory key event in this test material-induced hepatocarcinogenesis. Furthermore, nitrapyrin exposure induced a clear, concentration-responsive increase in cell proliferation in mouse, but not human, hepatocytes in vitro. Evaluation of the data from repeat dose and MoA studies by the Bradford Hill criteria and a Human Relevance Framework (HRF) suggested that nitrapyrin-induced mouse liver tumors are not relevant to human health risk assessment because of qualitative differences between these two species.

19.
Environ Mol Mutagen ; 58(3): 122-134, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28326610

RESUMEN

Ethylene oxide (EO) is a direct acting alkylating agent; in vitro and in vivo studies indicate that it is both a mutagen and a carcinogen. However, it remains unclear whether the mode of action (MOA) for cancer for EO is a mutagenic MOA, specifically via point mutation. To investigate the MOA for EO-induced mouse lung tumors, male Big Blue (BB) B6C3F1 mice (10/group) were exposed to EO by inhalation, 6 hr/day, 5 days/week for 4 (0, 10, 50, 100, or 200 ppm EO), 8, or 12 weeks (0, 100, or 200 ppm EO). Lung DNA samples were analyzed for cII mutant frequency (MF) at 4, 8 and 12 weeks of exposure; the mutation spectrum was analyzed for mutants from control and 200 ppm EO treatments. Although EO-induced cII MFs were 1.5- to 2.7-fold higher than the concurrent controls at 4 weeks, statistically significant increases in the cII MF were found only after 8 and 12 weeks of exposure and only at 200 ppm EO (P ≤ 0.05), which is twice the highest concentration used in the cancer bioassay. Consistent with the positive response, DNA sequencing of cII mutants showed a significant shift in the mutational spectra between control and 200 ppm EO following 8 and 12 week exposures (P ≤ 0.035), but not at 4 weeks. Thus, EO mutagenic activity in vivo was relatively weak and required higher than tumorigenic concentrations and longer than 4 weeks exposure durations. These data do not follow the classical patterns for a MOA mediated by point mutations. Environ. Mol. Mutagen. 58:122-134, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Carcinógenos/toxicidad , Óxido de Etileno/toxicidad , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Mutágenos/toxicidad , Mutación Puntual , Animales , Relación Dosis-Respuesta a Droga , Pulmón/patología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Masculino , Ratones Endogámicos , Factores de Tiempo
20.
Environ Mol Mutagen ; 58(5): 264-283, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27650663

RESUMEN

For several decades, regulatory testing schemes for genetic damage have been standardized where the tests being utilized examined mutations and structural and numerical chromosomal damage. This has served the genetic toxicity community well when most of the substances being tested were amenable to such assays. The outcome from this testing is usually a dichotomous (yes/no) evaluation of test results, and in many instances, the information is only used to determine whether a substance has carcinogenic potential or not. Over the same time period, mechanisms and modes of action (MOAs) that elucidate a wider range of genomic damage involved in many adverse health outcomes have been recognized. In addition, a paradigm shift in applied genetic toxicology is moving the field toward a more quantitative dose-response analysis and point-of-departure (PoD) determination with a focus on risks to exposed humans. This is directing emphasis on genomic damage that is likely to induce changes associated with a variety of adverse health outcomes. This paradigm shift is moving the testing emphasis for genetic damage from a hazard identification only evaluation to a more comprehensive risk assessment approach that provides more insightful information for decision makers regarding the potential risk of genetic damage to exposed humans. To enable this broader context for examining genetic damage, a next generation testing strategy needs to take into account a broader, more flexible approach to testing, and ultimately modeling, of genomic damage as it relates to human exposure. This is consistent with the larger risk assessment context being used in regulatory decision making. As presented here, this flexible approach for examining genomic damage focuses on testing for relevant genomic effects that can be, as best as possible, associated with an adverse health effect. The most desired linkage for risk to humans would be changes in loci associated with human diseases, whether in somatic or germ cells. The outline of a flexible approach and associated considerations are presented in a series of nine steps, some of which can occur in parallel, which was developed through a collaborative effort by leading genetic toxicologists from academia, government, and industry through the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC). The ultimate goal is to provide quantitative data to model the potential risk levels of substances, which induce genomic damage contributing to human adverse health outcomes. Any good risk assessment begins with asking the appropriate risk management questions in a planning and scoping effort. This step sets up the problem to be addressed (e.g., broadly, does genomic damage need to be addressed, and if so, how to proceed). The next two steps assemble what is known about the problem by building a knowledge base about the substance of concern and developing a rational biological argument for why testing for genomic damage is needed or not. By focusing on the risk management problem and potential genomic damage of concern, the next step of assay(s) selection takes place. The work-up of the problem during the earlier steps provides the insight to which assays would most likely produce the most meaningful data. This discussion does not detail the wide range of genomic damage tests available, but points to types of testing systems that can be very useful. Once the assays are performed and analyzed, the relevant data sets are selected for modeling potential risk. From this point on, the data are evaluated and modeled as they are for any other toxicology endpoint. Any observed genomic damage/effects (or genetic event(s)) can be modeled via a dose-response analysis and determination of an estimated PoD. When a quantitative risk analysis is needed for decision making, a parallel exposure assessment effort is performed (exposure assessment is not detailed here as this is not the focus of this discussion; guidelines for this assessment exist elsewhere). Then the PoD for genomic damage is used with the exposure information to develop risk estimations (e.g., using reference dose (RfD), margin of exposure (MOE) approaches) in a risk characterization and presented to risk managers for informing decision making. This approach is applicable now for incorporating genomic damage results into the decision-making process for assessing potential adverse outcomes in chemically exposed humans and is consistent with the ILSI HESI Risk Assessment in the 21st Century (RISK21) roadmap. This applies to any substance to which humans are exposed, including pharmaceuticals, agricultural products, food additives, and other chemicals. It is time for regulatory bodies to incorporate the broader knowledge and insights provided by genomic damage results into the assessments of risk to more fully understand the potential of adverse outcomes in chemically exposed humans, thus improving the assessment of risk due to genomic damage. The historical use of genomic damage data as a yes/no gateway for possible cancer risk has been too narrowly focused in risk assessment. The recent advances in assaying for and understanding genomic damage, including eventually epigenetic alterations, obviously add a greater wealth of information for determining potential risk to humans. Regulatory bodies need to embrace this paradigm shift from hazard identification to quantitative analysis and to incorporate the wider range of genomic damage in their assessments of risk to humans. The quantitative analyses and methodologies discussed here can be readily applied to genomic damage testing results now. Indeed, with the passage of the recent update to the Toxic Substances Control Act (TSCA) in the US, the new generation testing strategy for genomic damage described here provides a regulatory agency (here the US Environmental Protection Agency (EPA), but suitable for others) a golden opportunity to reexamine the way it addresses risk-based genomic damage testing (including hazard identification and exposure). Environ. Mol. Mutagen. 58:264-283, 2017. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.


Asunto(s)
Genómica/métodos , Pruebas de Mutagenicidad/tendencias , Animales , Salud Ambiental , Humanos , Modelos Teóricos , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...