Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3176, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653971

RESUMEN

Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change. Here, we test these two hypotheses using a proxy-informed ensemble of ice sheet model simulations with varying ocean thermal forcing, global glacioisostatic adjustment (GIA) model simulations, and coupled ice sheet-GIA simulations that consider the interactions between these processes. Our results indicate that a warm to cold ocean cavity regime shift is the most likely cause of this grounding line reversal, but that GIA influences the rate of ice sheet response to oceanic changes. This implies that the grounding line here is sensitive to future changes in sub-ice shelf ocean circulation.

2.
Science ; 382(6677): 1384-1389, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38127761

RESUMEN

The marine-based West Antarctic Ice Sheet (WAIS) is considered vulnerable to irreversible collapse under future climate trajectories, and its tipping point may lie within the mitigated warming scenarios of 1.5° to 2°C of the United Nations Paris Agreement. Knowledge of ice loss during similarly warm past climates could resolve this uncertainty, including the Last Interglacial when global sea levels were 5 to 10 meters higher than today and global average temperatures were 0.5° to 1.5°C warmer than preindustrial levels. Using a panel of genome-wide, single-nucleotide polymorphisms of a circum-Antarctic octopus, we show persistent, historic signals of gene flow only possible with complete WAIS collapse. Our results provide the first empirical evidence that the tipping point of WAIS loss could be reached even under stringent climate mitigation scenarios.


Asunto(s)
Calentamiento Global , Cubierta de Hielo , Octopodiformes , Regiones Antárticas , Genómica , Agua de Mar , Temperatura , Octopodiformes/genética , Polimorfismo de Nucleótido Simple , Animales
3.
Proc Natl Acad Sci U S A ; 120(39): e2304152120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722047

RESUMEN

Millennial-scale ice sheet variability (1-15 kyr periods) is well documented in the Quaternary, providing insight into critical atmosphere-ocean-cryosphere interactions that can inform the mechanism and pace of future climate change. Ice sheet variability at similar frequencies is comparatively less known and understood prior to the Quaternary during times, where higher atmospheric pCO2 and warmer climates prevailed, and continental-scale ice sheets were largely restricted to Antarctica. In this study, we evaluate a high-resolution clast abundance dataset (ice-rafted debris) that captures East Antarctic ice sheet variability in the western Ross Sea during the early Miocene. This dataset is derived from a 100 m-thick mudstone interval in the ANtarctic DRILLing (ANDRILL or AND) core 2A, which preserves a record of precession and eccentricity variability. The sedimentation rates are of appropriate resolution to also characterize the signature of robust, subprecession cyclicity. Strong sub-precession (~10 kyr) cyclicity is observed, with an amplitude modulation in lockstep with eccentricity, indicating a relationship between high-frequency Antarctic ice sheet dynamics and astronomical forcing. Bicoherence analysis indicates that many of the observed millennial-scale cycles (as short as 1.2 kyr) are associated with nonlinear interactions (combination or difference tones) between each other and the Milankovitch cycles. The presence of these cycles during the Miocene reveals the ubiquity of millennial-scale ice sheet variability and sheds light on the interactions between Earth's atmosphere, ocean, and ice in climates warmer than the Quaternary.

4.
Nat Commun ; 12(1): 6683, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795275

RESUMEN

Emerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly. This dynamic response of the AIS is supported by (i) a West Antarctic blue ice record of ice-elevation drawdown >600 m during three such retreat events related to globally recognized deglacial meltwater pulses, (ii) step-wise retreat up to 400 km across the Ross Sea shelf, (iii) independent ice sheet modeling, and (iv) tipping point analysis. Our findings are consistent with a growing body of evidence suggesting the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat and substantial global sea level rise.

5.
Science ; 372(6548): 1266-1267, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34140372

Asunto(s)
Hielo
6.
Nature ; 593(7857): 74-82, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953415

RESUMEN

The land ice contribution to global mean sea level rise has not yet been predicted1 using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models2-8, but primarily used previous-generation scenarios9 and climate models10, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios11,12 using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.

7.
Proc Natl Acad Sci U S A ; 117(8): 3996-4006, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047039

RESUMEN

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice-climate feedbacks that further amplify warming.

8.
Nature ; 577(7792): 660-664, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31996820

RESUMEN

Sea-level histories during the two most recent deglacial-interglacial intervals show substantial differences1-3 despite both periods undergoing similar changes in global mean temperature4,5 and forcing from greenhouse gases6. Although the last interglaciation (LIG) experienced stronger boreal summer insolation forcing than the present interglaciation7, understanding why LIG global mean sea level may have been six to nine metres higher than today has proven particularly challenging2. Extensive areas of polar ice sheets were grounded below sea level during both glacial and interglacial periods, with grounding lines and fringing ice shelves extending onto continental shelves8. This suggests that oceanic forcing by subsurface warming may also have contributed to ice-sheet loss9-12 analogous to ongoing changes in the Antarctic13,14 and Greenland15 ice sheets. Such forcing would have been especially effective during glacial periods, when the Atlantic Meridional Overturning Circulation (AMOC) experienced large variations on millennial timescales16, with a reduction of the AMOC causing subsurface warming throughout much of the Atlantic basin9,12,17. Here we show that greater subsurface warming induced by the longer period of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level rise compared with the last deglaciation. This greater forcing also contributed to excess loss from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level to rise at least four metres above modern levels. When accounting for the combined influences of penultimate and LIG deglaciation on glacial isostatic adjustment, this excess loss of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral reefs and speleothems at intermediate- and far-field sites.


Asunto(s)
Cubierta de Hielo , Elevación del Nivel del Mar/historia , Agua de Mar/análisis , Animales , Regiones Antárticas , Antozoos , Arrecifes de Coral , Foraminíferos , Fósiles , Groenlandia , Historia Antigua , Cubierta de Hielo/química , Modelos Teóricos , Temperatura
9.
Sci Adv ; 5(8): eaav8754, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31565668

RESUMEN

Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation in the Ross Embayment, Antarctica's largest catchment, differ considerably and imply either extremely high or very low sensitivity to environmental forcing. To investigate this, we perform regional ice sheet simulations using a wide range of atmosphere and ocean forcings. Constrained by marine and terrestrial geological data, these models predict earliest retreat in the central embayment and rapid terrestrial ice sheet thinning during the Early Holocene. We find that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, however, grounding-line position is much more sensitive to subshelf melt rates, implicating ocean thermal forcing as the key driver of past ice sheet retreat.

10.
Nature ; 566(7742): 65-72, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728520

RESUMEN

Government policies currently commit us to surface warming of three to four degrees Celsius above pre-industrial levels by 2100, which will lead to enhanced ice-sheet melt. Ice-sheet discharge was not explicitly included in Coupled Model Intercomparison Project phase 5, so effects on climate from this melt are not currently captured in the simulations most commonly used to inform governmental policy. Here we show, using simulations of the Greenland and Antarctic ice sheets constrained by satellite-based measurements of recent changes in ice mass, that increasing meltwater from Greenland will lead to substantial slowing of the Atlantic overturning circulation, and that meltwater from Antarctica will trap warm water below the sea surface, creating a positive feedback that increases Antarctic ice loss. In our simulations, future ice-sheet melt enhances global temperature variability and contributes up to 25 centimetres to sea level by 2100. However, uncertainties in the way in which future changes in ice dynamics are modelled remain, underlining the need for continued observations and comprehensive multi-model assessments.

11.
Nature ; 566(7742): 58-64, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728522

RESUMEN

Predictions for sea-level rise this century due to melt from Antarctica range from zero to more than one metre. The highest predictions are driven by the controversial marine ice-cliff instability (MICI) hypothesis, which assumes that coastal ice cliffs can rapidly collapse after ice shelves disintegrate, as a result of surface and sub-shelf melting caused by global warming. But MICI has not been observed in the modern era and it remains unclear whether it is required to reproduce sea-level variations in the geological past. Here we quantify ice-sheet modelling uncertainties for the original MICI study and show that the probability distributions are skewed towards lower values (under very high greenhouse gas concentrations, the most likely value is 45 centimetres). However, MICI is not required to reproduce sea-level changes due to Antarctic ice loss in the mid-Pliocene epoch, the last interglacial period or 1992-2017; without it we find that the projections agree with previous studies (all 95th percentiles are less than 43 centimetres). We conclude that previous interpretations of these MICI projections over-estimate sea-level rise this century; because the MICI hypothesis is not well constrained, confidence in projections with MICI would require a greater range of observationally constrained models of ice-shelf vulnerability and ice-cliff collapse.

12.
Cryosphere ; 12(4): 1433-1460, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32676174

RESUMEN

Earlier large-scale Greenland ice sheet sea-level projections (e.g., those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of the initMIP-Greenland intercomparison exercise is to compare, evaluate and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project - phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly), and should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap, but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

13.
Nat Commun ; 9(1): 2742, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992953

RESUMEN

The original version of this Article contained an error in the spelling of the author Florence Colleoni, which was incorrectly given as Florence Colloni. This has been corrected in both the PDF and HTML versions of the Article.

14.
Nature ; 558(7709): 284-287, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899483

RESUMEN

The East Antarctic Ice Sheet (EAIS) is the largest potential contributor to sea-level rise. However, efforts to predict the future evolution of the EAIS are hindered by uncertainty in how it responded to past warm periods, for example, during the Pliocene epoch (5.3 to 2.6 million years ago), when atmospheric carbon dioxide concentrations were last higher than 400 parts per million. Geological evidence indicates that some marine-based portions of the EAIS and the West Antarctic Ice Sheet retreated during parts of the Pliocene1,2, but it remains unclear whether ice grounded above sea level also experienced retreat. This uncertainty persists because global sea-level estimates for the Pliocene have large uncertainties and cannot be used to rule out substantial terrestrial ice loss 3 , and also because direct geological evidence bearing on past ice retreat on land is lacking. Here we show that land-based sectors of the EAIS that drain into the Ross Sea have been stable throughout the past eight million years. We base this conclusion on the extremely low concentrations of cosmogenic 10Be and 26Al isotopes found in quartz sand extracted from a land-proximal marine sediment core. This sediment had been eroded from the continent, and its low levels of cosmogenic nuclides indicate that it experienced only minimal exposure to cosmic radiation, suggesting that the sediment source regions were covered in ice. These findings indicate that atmospheric warming during the past eight million years was insufficient to cause widespread or long-lasting meltback of the EAIS margin onto land. We suggest that variations in Antarctic ice volume in response to the range of global temperatures experienced over this period-up to 2-3 degrees Celsius above preindustrial temperatures 4 , corresponding to future scenarios involving carbon dioxide concentrations of between 400 and 500 parts per million-were instead driven mostly by the retreat of marine ice margins, in agreement with the latest models5,6.

15.
Nat Commun ; 9(1): 2289, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915266

RESUMEN

Understanding how the Antarctic ice sheet will respond to global warming relies on knowledge of how it has behaved in the past. The use of numerical models, the only means to quantitatively predict the future, is hindered by limitations to topographic data both now and in the past, and in knowledge of how subsurface oceanic, glaciological and hydrological processes interact. Incorporating the variety and interplay of such processes, operating at multiple spatio-temporal scales, is critical to modeling the Antarctic's system evolution and requires direct observations in challenging locations. As these processes do not observe disciplinary boundaries neither should our future research.

16.
Nat Commun ; 8(1): 520, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900099

RESUMEN

Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine 14C and 10Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.

17.
Nat Commun ; 8: 15425, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28598412

RESUMEN

Marine sediment records suggest that episodes of major atmospheric CO2 drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-latitude deserts. However, uncertainty exists over contributions to CO2 sequestration from complementary Fe sources, such as the Antarctic ice sheet, due to the difficulty of locating and interrogating suitable archives that have the potential to preserve such information. Here we present petrographic, geochemical and microbial DNA evidence preserved in precisely dated subglacial calcites from close to the East Antarctic Ice-Sheet margin, which together suggest that volcanically-induced drainage of Fe-rich waters during the Last Glacial Maximum could have reached the Southern Ocean. Our results support a significant contribution of Antarctic volcanism to subglacial transport and delivery of nutrients with implications on ocean productivity at peak glacial conditions.

18.
Nature ; 541(7635): 72-76, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27951585

RESUMEN

Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

19.
Proc Natl Acad Sci U S A ; 109(40): 16052-6, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988078

RESUMEN

Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.


Asunto(s)
Calentamiento Global , Cubierta de Hielo/química , Modelos Teóricos , Regiones Antárticas , Simulación por Computador , Historia Antigua , Océanos y Mares , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...