Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352378

RESUMEN

BACKGROUND: Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, PTSD, dementia, and age-related cognitive decline. While BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis (AHN), its significance as a pharmacological target has not been tested. METHODS: In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in BPS in mice. RESULTS: Chronic treatment with RO6871135, 7.5 mg/kg increased AHN and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of AHN by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMK2a, CaMK2b, MAP2K6, and GSK3b. An analog compound also demonstrated high affinity for CDK8, CaMK2a, and GSK3b. CONCLUSIONS: These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS, and points to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.

2.
PLoS Biol ; 20(12): e3001934, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542656

RESUMEN

Viruses must balance their reliance on host cell machinery for replication while avoiding host defense. Influenza A viruses are zoonotic agents that frequently switch hosts, causing localized outbreaks with the potential for larger pandemics. The host range of influenza virus is limited by the need for successful interactions between the virus and cellular partners. Here we used immunocompetitive capture-mass spectrometry to identify cellular proteins that interact with human- and avian-style viral polymerases. We focused on the proviral activity of heterogenous nuclear ribonuclear protein U-like 1 (hnRNP UL1) and the antiviral activity of mitochondrial enoyl CoA-reductase (MECR). MECR is localized to mitochondria where it functions in mitochondrial fatty acid synthesis (mtFAS). While a small fraction of the polymerase subunit PB2 localizes to the mitochondria, PB2 did not interact with full-length MECR. By contrast, a minor splice variant produces cytoplasmic MECR (cMECR). Ectopic expression of cMECR shows that it binds the viral polymerase and suppresses viral replication by blocking assembly of viral ribonucleoprotein complexes (RNPs). MECR ablation through genome editing or drug treatment is detrimental for cell health, creating a generic block to virus replication. Using the yeast homolog Etr1 to supply the metabolic functions of MECR in MECR-null cells, we showed that specific antiviral activity is independent of mtFAS and is reconstituted by expressing cMECR. Thus, we propose a strategy where alternative splicing produces a cryptic antiviral protein that is embedded within a key metabolic enzyme.


Asunto(s)
Ácido Graso Desaturasas , Virus de la Influenza A , Humanos , Ácido Graso Desaturasas/metabolismo , Empalme Alternativo/genética , Mitocondrias/metabolismo , Virus de la Influenza A/genética , Isoformas de Proteínas/metabolismo , Replicación Viral
3.
Front Cell Neurosci ; 15: 772011, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966261

RESUMEN

Glia cells have a crucial role in the central nervous system and are involved in the majority of neurological diseases. While glia isolation techniques are well established for rodent brain, only recent advances in isolating glial cells from human brain enabled analyses of human-specific glial-cell profiles. Immunopanning that is the prospective purification of cells using cell type-specific antibodies, has been successfully established for isolating glial cells from human fetal brain or from tissue obtained during brain surgeries. Here, we describe an immunopanning protocol to acutely isolate glial cells from post-mortem human brain tissue for e.g. transcriptome and proteome analyses. We enriched for microglia, oligodendrocytes and astrocytes from cortical gray matter tissue from three donors. For each enrichment, we assessed the presence of known glia-specific markers at the RNA and protein levels. In this study we show that immunopanning can be employed for acute isolation of glial cells from human post-mortem brain, which allows characterization of glial phenotypes depending on age, disease and brain regions.

4.
Mol Cell Proteomics ; 19(10): 1706-1723, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32680918

RESUMEN

Tandem mass tag (TMT) is a multiplexing technology widely-used in proteomic research. It enables relative quantification of proteins from multiple biological samples in a single MS run with high efficiency and high throughput. However, experiments often require more biological replicates or conditions than can be accommodated by a single run, and involve multiple TMT mixtures and multiple runs. Such larger-scale experiments combine sources of biological and technical variation in patterns that are complex, unique to TMT-based workflows, and challenging for the downstream statistical analysis. These patterns cannot be adequately characterized by statistical methods designed for other technologies, such as label-free proteomics or transcriptomics. This manuscript proposes a general statistical approach for relative protein quantification in MS- based experiments with TMT labeling. It is applicable to experiments with multiple conditions, multiple biological replicate runs and multiple technical replicate runs, and unbalanced designs. It is based on a flexible family of linear mixed-effects models that handle complex patterns of technical artifacts and missing values. The approach is implemented in MSstatsTMT, a freely available open-source R/Bioconductor package compatible with data processing tools such as Proteome Discoverer, MaxQuant, OpenMS, and SpectroMine. Evaluation on a controlled mixture, simulated datasets, and three biological investigations with diverse designs demonstrated that MSstatsTMT balanced the sensitivity and the specificity of detecting differentially abundant proteins, in large-scale experiments with multiple biological mixtures.


Asunto(s)
Marcaje Isotópico , Proteoma/metabolismo , Estadística como Asunto , Espectrometría de Masas en Tándem , Humanos , Proteómica
5.
EBioMedicine ; 27: 258-274, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29269042

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss. The protein HtrA1 is enriched in retinal pigment epithelial (RPE) cells isolated from AMD patients and in drusen deposits. However, it is poorly understood how increased levels of HtrA1 affect the physiological function of the RPE at the intracellular level. Here, we developed hfRPE (human fetal retinal pigment epithelial) cell culture model where cells fully differentiated into a polarized functional monolayer. In this model, we fine-tuned the cellular levels of HtrA1 by targeted overexpression. Our data show that HtrA1 enzymatic activity leads to intracellular degradation of tubulin with a corresponding reduction in the number of microtubules, and consequently to an altered mechanical cell phenotype. HtrA1 overexpression further leads to impaired apical processes and decreased phagocytosis, an essential function for photoreceptor survival. These cellular alterations correlate with the AMD phenotype and thus highlight HtrA1 as an intracellular target for therapeutic interventions towards AMD treatment.


Asunto(s)
Polaridad Celular , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/patología , Modelos Biológicos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Tubulina (Proteína)/metabolismo , Uniones Adherentes/metabolismo , Adulto , Feto/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Humanos , Microtúbulos/metabolismo , Mutación/genética , Nanopartículas/química , Fagocitosis , Polimerizacion , Agregado de Proteínas , Unión Proteica , Transcripción Genética
6.
Nat Commun ; 8(1): 1476, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29133793

RESUMEN

Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Piperazinas/farmacología , Precursores del ARN/metabolismo , Empalme del ARN/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Biflavonoides/farmacología , Sistema Libre de Células , Biología Computacional , Compuestos Epoxi/farmacología , Exones/genética , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Ligandos , Macrólidos/farmacología , Atrofia Muscular Espinal/genética , Piperazinas/síntesis química , Unión Proteica , Estructura Cuaternaria de Proteína , Proteómica/métodos , Precursores del ARN/genética , ARN Mensajero/genética , Empalmosomas/efectos de los fármacos , Empalmosomas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
7.
Mol Cell Proteomics ; 13(11): 3040-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25044019

RESUMEN

Mapping protein-protein interactions is essential to fully characterize the biological function of a protein and improve our understanding of diseases. Affinity purification coupled to mass spectrometry (AP-MS) using selective antibodies against a target protein has been commonly applied to study protein complexes. However, one major limitation is a lack of specificity as a substantial part of the proposed binders is due to nonspecific interactions. Here, we describe an innovative immuno-competitive capture mass spectrometry (ICC-MS) method to allow systematic investigation of protein-protein interactions. ICC-MS markedly increases the specificity of classical immunoprecipitation (IP) by introducing a competition step between free and capturing antibody prior to IP. Instead of comparing only one experimental sample with a control, the methodology generates a 12-concentration antibody competition profile. Label-free quantitation followed by a robust statistical analysis of the data is then used to extract the cellular interactome of a protein of interest and to filter out background proteins. We applied this new approach to specifically map the interactome of hepatitis C virus (HCV) nonstructural protein 5A (NS5A) in a cellular HCV replication system and uncovered eight new NS5A-interacting protein candidates along with two previously validated binding partners. Follow-up biological validation experiments revealed that large tumor suppressor homolog 1 and 2 (LATS1 and LATS2, respectively), two closely related human protein kinases, are novel host kinases responsible for NS5A phosphorylation at a highly conserved position required for optimal HCV genome replication. These results are the first illustration of the value of ICC-MS for the analysis of endogenous protein complexes to identify biologically relevant protein-protein interactions with high specificity.


Asunto(s)
Hepacivirus/crecimiento & desarrollo , Mapeo de Interacción de Proteínas/métodos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas no Estructurales Virales/metabolismo , Línea Celular , Replicación del ADN/genética , Genoma Viral/genética , Humanos , Espectrometría de Masas/métodos , Antígenos de Histocompatibilidad Menor , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteoma/análisis , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Supresoras de Tumor/genética , Replicación Viral/genética , Replicación Viral/fisiología
8.
Mol Cell Proteomics ; 12(11): 3339-49, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23882028

RESUMEN

The propagation of phosphorylation downstream of receptor tyrosine kinases is a key dynamic cellular event involved in signal transduction, which is often deregulated in disease states such as cancer. Probing phosphorylation dynamics is therefore crucial for understanding receptor tyrosine kinases' function and finding ways to inhibit their effects. MS methods combined with metabolic labeling such as stable isotope labeling with amino acids in cell culture (SILAC) have already proven successful in deciphering temporal phosphotyrosine perturbations. However, they are limited in terms of multiplexing, and they also are time consuming, because several experiments need to be performed separately. Here, we introduce an innovative approach based on 5-plex SILAC that allows monitoring of phosphotyrosine signaling perturbations induced by a drug treatment in one single experiment. Using this new labeling strategy specifically tailored for phosphotyrosines, it was possible to generate the time profiles for 318 unique phosphopeptides belonging to 215 proteins from an erlotinib-treated breast cancer cell line model. Hierarchical clustering of the time profiles followed by pathway enrichment analysis highlighted epidermal growth factor receptor (EGFR or ErbB1) and ErbB2 signaling as the major pathways affected by erlotinib, thereby validating the method. Moreover, based on the similarity of its time profile to those of other proteins in the ErbB pathways, the phosphorylation at Tyr453 of protein FAM59A, a recently described adaptor of EGFR, was confirmed as tightly involved in the signaling cascade. The present investigation also demonstrates the remote effect of EGFR inhibition on ErbB3 phosphorylation sites such as Tyr1289 and Tyr1328, as well as a potential feedback effect on Tyr877 of ErbB2. Overall, the 5-plex SILAC is a straightforward approach that extends sample multiplexing and builds up the arsenal of methods for tyrosine phosphorylation dynamics.


Asunto(s)
Marcaje Isotópico/métodos , Proteómica/métodos , Tirosina/química , Tirosina/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cromatografía Liquida/métodos , Receptores ErbB/química , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib , Femenino , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem/métodos
9.
Mol Cancer Ther ; 12(4): 520-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23371860

RESUMEN

Although both erlotinib and gefitinib target the EGF receptor (EGFR), erlotinib is effective in patients with EGFR wild-type or mutated tumors, whereas gefitinib is only beneficial for patients with activating mutations. To determine whether these differences in clinical outcomes can be attributed to their respective protein interaction profiles, a label-free, quantitative chemical proteomics study was conducted. Using this method, 24 proteins were highlighted in the binding profiles of erlotinib and gefitinib. Unlike gefinitib, erlotinib displaced the ternary complex formed by integrin-linked kinase (ILK), α-parvin, and PINCH (IPP). The docking of erlotinib in the three-dimensional structure of ILK showed that erlotinib has the ability to bind to the ATP-binding site, whereas gefitinib is unlikely to bind with high affinity. As the IPP complex has been shown to be involved in epithelial-to-mesenchymal transition (EMT) and erlotinib sensitivity has been correlated with EMT status, we used a cellular model of inducible transition and observed that erlotinib prevented EMT in a more efficient way than gefitinib by acting on E-cadherin expression as well as on IPP levels. A retrospective analysis of the MERIT trial indicated that, besides a high level of E-cadherin, a low level of ILK could be linked to clinical benefit with erlotinib. In conclusion, we propose that, in an EGFR wild-type context, erlotinib may have a complementary mode of action by inhibiting IPP complex activities, resulting in the slowing down of the metastatic process of epithelial tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Proteómica , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib , Gefitinib , Expresión Génica , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Neoplasias Pulmonares/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Conformación Molecular , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA