Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros










Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180613

RESUMEN

Glioblastomas derived from malignant astrocytes are the most common primary tumors of the central nervous system in humans, exhibiting very bad prognosis. Treatment with surgery, radiotherapy, and chemotherapy (mainly using temozolomide), generates as much one-year survival. The circadian clock controls different aspects of tumor development, and its role in GBM is beginning to be explored. Here, the role of the canonic circadian clock gene bmal1 was studied in vivo in a nude mice model bearing human GBMs from LN229 cells xenografted orthotopically in the dorsal striatum. For that aim, a bmal1 knock-down was generated in LN229 cells by CRISPR/Cas9 gene editing tool, and tumor progression was followed in male mice by measuring survival, tumor growth, cell proliferation and prognosis with CD44 marker, as well as astrocyte activation in the tumor microenvironment with GFAP and nestin markers. Disruption of bmal1 in the tumor decreased survival, increased tumor growth and CD44 expression, worsened motor performance, as well as increased GFAP expression in astrocytes at tumor microenvironment. In addition, survival and tumor progression was not affected in mice bearing LN229 wild type GBM that underwent circadian disruption by constant light, as compared to mice synchronized to 12:12 light-dark cycles. These results consistently demonstrate in an in vivo orthotopic model of human GBM, that bmal1 has a key role as a tumor suppressor gene regulating GBM progression.

2.
J Neurooncol ; 166(3): 419-430, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277015

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Temozolomida/farmacología , Temozolomida/uso terapéutico , Dacarbazina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , O(6)-Metilguanina-ADN Metiltransferasa/genética , Estudios Retrospectivos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Metilación , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metilación de ADN , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
bioRxiv ; 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38105938

RESUMEN

Circadian rhythms are endogenous oscillations present in nearly all organisms from prokaryotes to humans, allowing them to adapt to cyclical environments close to 24 hours. Circadian rhythms are regulated by a central clock, which is based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1 ε/δ (CK1 ε/δ ) phosphorylation. In the nematode Caenorhabditis elegans , period and casein kinase 1ε/δ are conserved as lin-42 and kin-20 , respectively. Here we studied the involvement of lin-42 and kin-20 in circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations of lin-42 and kin-20 generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and seam cells, a population of epidermal stem cells in C. elegans that undergo multiple divisions during development. Depletion of LIN-42 and KIN-20 specifically in neuronal cells after development was sufficient to lengthen the period of oscillating sur-5 expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.

5.
Front Physiol ; 14: 1225134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745237

RESUMEN

Introduction: The circadian system regulates various physiological processes such as sleep-wake cycles, hormone secretion, metabolism, and the reaction to both natural and drug-based rewards. Chronic disruption of the circadian system caused by unsteady synchronization with light-dark (LD) schedules, such as advancing chronic jet lag (CJL), leads to adverse physiological effects and pathologies, and is linked with changes in mood and depressive behaviors in humans and rodent models. Methods: C57BL/6J male mice were subjected to circadian disruption through phase advances of 6 h every 2 days (CJL +6/2). Mice under 12:12-h LD cycle were used as controls. After 8 weeks under these conditions, a battery of behavioral tests was performed to assess if mood-related behaviors were affected. Results: Compared to controls under 24 h LD cycles, mice under CJL presented desynchronization of activity-rest rhythms that led to several behavioral impairments, including a decrease in motivation for food reward, and an increase in anxiety, anhedonia, and depressive-like behavior. Conclusion: Chronic circadian disruption, caused by an experimental CJL protocol, affects mood-related and reward-related behaviors in mice. Understanding the importance of the circadian system and its potential role for disruption due to CJL is important for maintaining good health and well-being.

6.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745358

RESUMEN

Background: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. Methods and Results: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. Conclusion: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity.

9.
J Photochem Photobiol B ; 211: 112000, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32919174

RESUMEN

Circadian rhythms are driven by an endogenous clock which is synchronized by daily environmental cycles (known as zeitgebers). Although the circadian responses of C. elegans to light have been recently reported, the mechanisms and pathways involved in their synchronization are still unknown. Here we present, by means of a novel behavioral approach, a complete characterization of C. elegans circadian synchronization to light and temperature cycles. Moreover, we screened mutant strains in search of defects of photic and thermal responses in order to study their putative pathways. We show that the wild-type strain is able to synchronize to combined cycles of light and temperature, with the best performance achieved under an optimal combination and phase-relationship of zeitgebers (high temperature in the dark phase and low temperature in the light phase). A lower responsiveness for the mutant strains MT21793 (lite-1/gur3 ko) and IK597 (gcy 8, 18 and 23 ko) was found in response to light and temperature, respectively. However, both mutants were still able to synchronize to a combined cycle of both stimuli. Our results shed light on the response of C. elegans to different zeitgebers as well as their possible synchronization pathways, the molecular components involved in these pathways, and their relative strength.


Asunto(s)
Ritmo Circadiano/fisiología , Locomoción/fisiología , Animales , Conducta Animal , Relojes Biológicos , Caenorhabditis elegans , Luz , Modelos Biológicos , Actividad Motora , Mutación , Fotoperiodo , Transducción de Señal , Temperatura
10.
J Pineal Res ; 69(4): e12689, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32761922

RESUMEN

Key to the transition of humans from nomadic hunting-gathering groups to industrialized and highly urbanized societies was the creation of protected and artificially lit environments that extended the natural daylight hours and consolidated sleep away from nocturnal threats. These conditions isolated humans from the natural regulators of sleep and exposed them to higher levels of light during the evening, which are associated with a later sleep onset. Here, we investigated the extent to which this delayed timing of sleep is due to a delayed circadian system. We studied two communities of Toba/Qom in the northern region of Argentina, one with and the other without access to electricity. These communities have recently transitioned from a hunting-gathering subsistence to mixed subsistence systems and represent a unique model in which to study the potential effects of the access to artificial light on sleep physiology. We have previously shown that participants in the community with access to electricity had, compared to participants in the community without electricity, later sleep onsets, and shorter sleep bouts. Here, we show they also have a delayed dim-light melatonin onset (DLMO). This difference is present during the winter but not during the spring when the influence of evening artificial light is likely less relevant. Our results support the notion that the human transition into artificially lit environments had a major impact on physiological systems that regulate sleep timing, including the phase of the master circadian clock.


Asunto(s)
Ritmo Circadiano , Indígenas Sudamericanos , Iluminación , Melatonina/sangre , Sueño , Adulto , Argentina , Femenino , Humanos , Masculino
12.
Commun Biol ; 3(1): 211, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376902

RESUMEN

The methyl cycle is a universal metabolic pathway providing methyl groups for the methylation of nuclei acids and proteins, regulating all aspects of cellular physiology. We have previously shown that methyl cycle inhibition in mammals strongly affects circadian rhythms. Since the methyl cycle and circadian clocks have evolved early during evolution and operate in organisms across the tree of life, we sought to determine whether the link between the two is also conserved. Here, we show that methyl cycle inhibition affects biological rhythms in species ranging from unicellular algae to humans, separated by more than 1 billion years of evolution. In contrast, the cyanobacterial clock is resistant to methyl cycle inhibition, although we demonstrate that methylations themselves regulate circadian rhythms in this organism. Mammalian cells with a rewired bacteria-like methyl cycle are protected, like cyanobacteria, from methyl cycle inhibition, providing interesting new possibilities for the treatment of methylation deficiencies.


Asunto(s)
Ritmo Circadiano , Metilación , Animales , Arabidopsis/fisiología , Caenorhabditis elegans/fisiología , Chlamydomonas reinhardtii/fisiología , Chlorophyta/fisiología , Drosophila melanogaster/fisiología , Humanos , Ratones/fisiología , Synechococcus/fisiología , Pez Cebra/fisiología
13.
PLoS One ; 15(4): e0231591, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32294116

RESUMEN

A robust adaptation to environmental changes is vital for survival. Almost all living organisms have a circadian timing system that allows adjusting their physiology to cyclic variations in the surrounding environment. Among vertebrates, many birds are also seasonal species, adapting their physiology to annual changes in photoperiod (amplitude, length and duration). Tawny Owls (Strix aluco) are nocturnal birds of prey that use vocalization as their principal mechanism of communication. Diurnal and seasonal changes in vocalization have been described for several vocal species, including songbirds. Comparable studies are lacking for owls. In the present work, we show that male Tawny Owls present a periodic vocalization pattern in the seconds-to-minutes range that is subject to both daily (early vs. late night) and seasonal (spring vs. summer) rhythmicity. These novel theory-generating findings appear to extend the role of the circadian system in regulating temporal events in the seconds-to-minutes range to other species.


Asunto(s)
Relojes Circadianos/fisiología , Fotoperiodo , Estaciones del Año , Estrigiformes/fisiología , Vocalización Animal/fisiología , Animales , Masculino
14.
Neurosci Lett ; 725: 134893, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32147501

RESUMEN

Interval timing measures time estimation in the seconds-to-minutes range. Antarctica provides a real-world context to study the effect of extreme photoperiods and isolation on time perception. The aim of this study was to explore interval timing as a cognitive measure in the crew of Belgrano II Argentine Antarctic Station. A total of 13 subjects were assessed for interval timing in short (3 s), intermediate (6 s) and long (12 s) duration stimuli. Measures were taken during the morning and evening, five times along the year. Significant variations were found for 3 s and 6 s during the morning and 6 s during the evening. Results suggest an impact of isolation on morning performances and an effect of the polar night on evening measures. These findings shed some light on the use of interval timing as a cognitive test to assess performance in extreme environments.


Asunto(s)
Ritmo Circadiano/fisiología , Ambientes Extremos , Fotoperiodo , Estaciones del Año , Aislamiento Social/psicología , Percepción del Tiempo/fisiología , Adulto , Regiones Antárticas/epidemiología , Humanos , Estudios Longitudinales , Masculino , Personal Militar/psicología , Pruebas Neuropsicológicas
15.
Nat Hum Behav ; 4(4): 387-396, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32042108

RESUMEN

Most adolescents exhibit very late chronotypes and attend school early in the morning, a misalignment that can affect their health and psychological well-being. Here we examine how the interaction between the chronotype and school timing of an individual influences academic performance, studying a unique sample of 753 Argentinian students who were randomly assigned to start school in the morning (07:45), afternoon (12:40) or evening (17:20). Although chronotypes tend to align partially with class time, this effect is insufficient to fully account for the differences with school start time. We show that (1) for morning-attending students, early chronotypes perform better than late chronotypes in all school subjects, an effect that is largest for maths; (2) this effect vanishes for students who attend school in the afternoon; and (3) late chronotypes benefit from evening classes. Together, these results demonstrate that academic performance is improved when school times are better aligned with the biological rhythms of adolescents.


Asunto(s)
Rendimiento Académico , Ritmo Circadiano , Escolaridad , Instituciones Académicas/organización & administración , Adolescente , Factores de Edad , Femenino , Humanos , Masculino , Estudiantes/psicología , Factores de Tiempo
16.
Behav Brain Res ; 382: 112471, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31958519

RESUMEN

Most living organisms have a circadian timing system adapted to optimize the daily rhythm of exposure to the environment. This circadian system modulates several behavioral and physiological processes, including the response to natural and drug rewards. Food is the most potent natural reward across species. Food-seeking is known to be mediated by dopaminergic and serotonergic transmission in cortico-limbic pathways. In the present work, we show evidence of a circadian modulation of motivation for food reward in young (4-months old) and aged (over 1.5 years old) C57BL/6 mice. Motivation was assayed through the progressive ratio (PR) schedule. Mice under a 12:12 light/dark (LD) cycle exhibited a diurnal rhythm in motivation, becoming more motivated during the night, coincident with their active phase. This rhythm was also evident under constant dark conditions, indicating the endogenous nature of this modulation. However, circadian arrhythmicity induced by chronic exposure to constant light conditions impaired the performance in the task causing low motivation levels. Furthermore, the day/night difference in motivation was also evident even without caloric restriction when using a palatable reward. All these results were found to be unaffected by aging. Taken together, our results indicate that motivation for food reward is regulated in a circadian manner, independent of the nutritional status and the nature of the reward, and that this rhythmic modulation is not affected by aging. These results may contribute to improve treatment related to psychiatric disorders or drugs of abuse, taking into account potential mechanisms of circadian modulation of motivational states.


Asunto(s)
Ritmo Circadiano , Motivación/fisiología , Recompensa , Animales , Condicionamiento Operante , Masculino , Ratones Endogámicos C57BL
17.
Sci Rep ; 9(1): 10875, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31350440

RESUMEN

During Antarctic isolation personnel are exposed to extreme photoperiods. A frequent observation is a sleep onset phase delay during winter. It is not known if, as a result, daytime sleeping in the form of naps increases. We sought to assess sleep patterns - with focus on daytime sleeping - and alertness in a Latin American crew overwintering in Argentine Antarctic station Belgrano II. Measurements were collected in 13 males during March, May, July, September and November, and included actigraphy and psychomotor vigilance tasks. Sleep duration significantly decreased during winter. A total of eight participants took at least one weekly nap across all measurement points. During winter, the nap onset was delayed, its duration increased and its efficiency improved. We observed a significant effect of seasonality in the association of evening alertness with sleep onset. Our results replicate previous findings regarding sleep during overwintering in Antarctica, adding the description of the role of napping and the report of a possible modulatory effect of seasonality in the relation between sleep and alertness. Napping should be considered as an important factor in the scheduling of activities of multicultural crews that participate in Antarctica.


Asunto(s)
Ritmo Circadiano/fisiología , Sueño/fisiología , Vigilia/fisiología , Actigrafía , Adulto , Regiones Antárticas , Femenino , Humanos , Masculino , Fotoperiodo , Polisomnografía , Estaciones del Año
18.
Yale J Biol Med ; 92(2): 241-250, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31249485

RESUMEN

Circadian clocks drive biological rhythms in physiology and behavior, providing a selective advantage by enabling organisms to synchronize to the 24 h environmental day. This process depends on light-dark transitions as the main signal that shifts the phase of the clock. In mammals, the light input reaches the master circadian clock in the hypothalamic suprachiasmatic nucleus through glutamatergic afferents from the retina, resulting in phase-shifts of the overt rhythms which depend on the time of the day at which light is applied, leading to changes in the activity of circadian core clock genes (i.e., Per1). This circadian gating of the synchronizing effect of light is dependent on the specific activation of signal transduction pathways involving several kinases acting on protein effectors. Protein phosphorylation is also an important regulatory mechanism essential for the generation and maintenance of circadian rhythms and plays a crucial role in the degradation and the appropriate turnover of PER proteins. In this work, we review the role of the main kinases implicated in the function of the master clock, with emphasis in those involved in circadian photic entrainment.


Asunto(s)
Relojes Circadianos/fisiología , Fototransducción/fisiología , Mamíferos/fisiología , Proteínas Quinasas/metabolismo , Animales , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Luz , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fosforilación/efectos de la radiación
20.
Biochem Pharmacol ; 156: 1-9, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30080991

RESUMEN

Nitric oxide (NO) is a gaseous free radical molecule with a short half-life (∼1 s), which can gain or lose an electron into three interchangeable redox-dependent forms, the radical (NO), the nitrosonium cation (NO+), and nitroxyl anion (HNO). NO acts as an intra and extracellular signaling molecule regulating a wide range of functions in the cardiovascular, immune, and nervous system. NO donors are collectively known by their ability to release NOin vitro and in vivo, being proposed as therapeutic pharmacological tools for the treatment of several pathologies, such as cardiovascular disease. The highly reactive NO molecule is easily oxidized under physiological conditions to N-oxides, nitrate/nitrite and nitrogen dioxide. Different cellular responses are triggered depending on: 1) NO concentration [e.g., nanomolar for heme coordination in the allosteric site of guanylate cyclase (sGC) enzyme]; 2) the type of chemical bound to the nitrosated group (i.e., bound to nitrogen, N-nitro, or bound to sulphur atom, S-nitro) determining post-translational cysteine nitrosation; 3) the time-dependent availability of molecular targets. Classic NO donors are: organic nitrates (e.g., nitroglycerin, or glyceryl trinitrate, GTN; isosorbide mononitrate, ISMN), diazeniumdiolates having a diolate group [or NONOates, e.g., 2-(N,N-diethylamino)-diazenolate-2-oxide], S-nitrosothiols (e.g., S-nitroso glutathione, GSNO; S-nitroso-N-acetylpenicillamine, SNAP) or the organic salt sodium nitroprusside (SNP). In addition, nitroxyl (HNO) donors such as Piloty's acid and Angeli's salt can also be considered. The specific NO form released, as well as its differential reactivity to thiols, could act on different molecular targets and should be discussed in the context of: a) the type and amount of NO species determining the sensitivity of molecular targets (e.g., heme coordination, or S-nitrosation); b) the cellular redox state that could gate different effects. Experimental designs should take special care when choosing which NO donors to use, since different outcomes are to be expected. This article will comment recent findings regarding physiological responses involving NO species and their pharmacological modulation with donor drugs, especially in the context of the photic transduction pathways at the hypothalamic circadian clock.


Asunto(s)
Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Animales , Relojes Circadianos/fisiología , Humanos , Oxidación-Reducción , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...