Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 53(3): 314-326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38453693

RESUMEN

Snowmelt runoff is a dominant pathway of phosphorus (P) losses from agricultural lands in cold climatic regions. Soil amendments effectively reduce P losses from soils by converting P to less soluble forms; however, changes in P speciation in cold climatic regions with fall-applied amendments have not been investigated. This study evaluated P composition in soils from a manured field with fall-amended alum (Al2(SO4)3·18H2O), gypsum (CaSO4·2H2O), or Epsom salt (MgSO4·7H2O) using three complementary methods: sequential P fractionation, scanning electron microscopy with energy-dispersive X-rays (SEM-EDX) spectroscopy, and P K-edge X-ray absorption near-edge structure spectroscopy (XANES). Plots were established in an annual crop field in southern Manitoba, Canada, with unamended and amended (2.5 Mg ha-1) treatments having four replicates in 2020 fall. Soil samples (0-10 cm) taken from each plot soon after spring snowmelt in 2021 were subjected to P fractionation. A composite soil sample for each treatment was analyzed using SEM-EDX and XANES. Alum- and Epsom salt-treated soils had significantly greater residual P fraction with a higher proportion of apatite-like P and a correspondingly lower proportion of P sorbed to calcite (CaCO3) than unamended and gypsum-amended soils. Backscattered electron imaging of SEM-EDX revealed that alum- and Epsom salt-amended treatments had P-enriched microsites frequently associated with aluminum (Al), iron (Fe), magnesium (Mg), and calcium (Ca), which was not observed in other treatments. Induced precipitation of apatite-like species may have been responsible for reduced P loss to snowmelt previously reported with fall application of amendments.


Asunto(s)
Compuestos de Alumbre , Sulfato de Calcio , Fósforo , Suelo , Sulfato de Calcio/química , Sulfato de Calcio/análisis , Suelo/química , Fósforo/análisis , Fósforo/química , Compuestos de Alumbre/química , Fertilizantes/análisis , Estiércol/análisis , Agricultura/métodos
2.
Environ Sci Pollut Res Int ; 31(13): 20293-20310, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372918

RESUMEN

Fresh produce is an important component of maintaining cognitive and physical health, particularly for children. A mechanism to increase access to fresh produce is the construction of community gardens in urban centres. While reducing barriers to nutritious food, the soil of the community garden can contain contaminants (e.g. metals) depending on the location and how the garden was constructed. This study quantified, for the first time, seven metals (As, Cd, Cr, Cu, Pb, Mn, and Ni) in soil from 83 community gardens across the City of Winnipeg in Manitoba, Canada. Concentrations of metals in soil were used to create distributions for environmental exposure and estimated daily intake, which were then used to determine exceedances of soil quality guidelines and acceptable daily intakes, respectively. Raised garden beds and gardens further from roads had typically lower concentrations of metals in surface gardens and those nearer to roads. While some concentrations of metals exceeded CCME guidelines levels for the protection of environmental health, the vast majority represent a low risk. For human health, only As posed a quantifiable risk of exceeding the USEPA acceptable daily intake via the consumption of produce from gardens, though this was < 1.2% for the whole population and < 10.2% for children aged 1 to 2 years. Overall, this study is the first to show that the concentration of the metals in soil from gardens typically poses a low risk to environmental and human health. We recommend the use of raised gardens to further mitigate risk.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Humanos , Jardines , Manitoba , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Metales/análisis , Canadá , Medición de Riesgo , Suelo , Metales Pesados/análisis
3.
J Environ Qual ; 51(1): 90-100, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34964984

RESUMEN

Anaerobic conditions developed during flooding can increase phosphorus (P) losses from soils to waterways. Soil amendment with gypsum (CaSO4 ·2H2 O) can effectively reduce flooding-induced P release, but its effectiveness is soil dependent, and the reasons are poorly understood. The objectives of this study were to reveal the possible inorganic P transformations during flooding of two soils (acidic-Neuenberg sandy loam [NBG-SL] and alkaline-Fyala clay [FYL-Cl]), with and without gypsum amendment prior to flooding. Porewater samples collected at 0, 35, and 70 d after flooding (DAF) from soils incubated in vessels were analyzed for dissolved reactive P (DRP); pH; and concentrations of calcium (Ca), magnesium, iron (Fe), manganese, chloride, nitrate, sulfate, and fluoride. Thermodynamic modeling using Visual MINTEQ software and chemical fractionation of soil P were used to infer P transformations. Soil redox potential (Eh) decreased with flooding and favored reductive dissolution of Fe-associated P increasing porewater DRP concentrations. Greater solubility of Ca-P under acidic pH maintained a higher DRP concentration in NBG-SL during early stages of flooding. A subsequent increase in pH with flooding and higher Ca concentration with added gypsum enhanced the stability of Ca-P (ß-tricalcium phosphate and octacalcium phosphate), reducing the DRP concentration in gypsum-amended NBG-SL. Stability of Ca-P was less affected with flooding and gypsum amendment in FYL-Cl soil because it had an alkaline pH and inherently higher Ca concentration. The FYL-Cl, with a more rapid decrease in Eh than NBG-SL, became severely reduced, releasing more P and Fe by 70 DAF. These conditions favored vivianite formation in FYL-Cl but not in NBG-SL.


Asunto(s)
Sulfato de Calcio , Suelo , Arcilla , Inundaciones , Fósforo
4.
Environ Pollut ; 287: 117619, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426378

RESUMEN

Enhanced release of phosphorus (P) from soils with snowmelt flooding poses a threat of eutrophication to waterbodies in cold climatic regions. Reductions in P losses with various soil amendments has been reported, however effectiveness of MgSO4 has not been studied under snowmelt flooding. This study examined (a) the P release enhancement with flooding in relation to initial soil P status and (b) the effectiveness of MgSO4 at two rates in reducing P release to floodwater under simulated snowmelt flooding. Intact soil monoliths were collected from eight agricultural fields from Southern Manitoba, Canada. Unamended and MgSO4 surface-amended monoliths (2.5 and 5.0 Mg ha-1) in triplicates were pre-incubated for 7 days, then flooded and incubated (4 °C) for 56 days. Pore water and floodwater samples collected at 7-day intervals were analyzed for dissolved reactive P (DRP), pH, Ca, Mg, Fe and Mn. Redox potential (Eh) was measured on each day of sampling. Representative soil samples collected from each field were analyzed for Olsen and Mehlich 3-P. Simulated snowmelt flooding enhanced the mobility of soil P with approximately 1.2-1.6 -fold increase in pore water DRP concentration from 0 to 21 days after flooding. Mehlich-3 P content showed a strong relationship with the pore water DRP concentrations suggesting its potential as a predictor of P loss risk during prolonged flooding. Surface application of MgSO4 reduced the P release to pore water and floodwater. The 2.5 Mg ha-1 rate was more effective than the higher rate with a 21-75% reduction in average pore water DRP, across soils. Soil monoliths amended with MgSO4 maintained a higher Eh, and had greater pore water Ca and Mg concentrations, which may have reduced redox-induced P release and favored re-precipitation of P with Ca and Mg, thus decreasing DRP concentrations in pore water and floodwater.


Asunto(s)
Contaminantes del Suelo , Suelo , Inundaciones , Sulfato de Magnesio , Fósforo , Contaminantes del Suelo/análisis , Agua
5.
J Environ Qual ; 50(1): 252-263, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33241863

RESUMEN

Anaerobic conditions developed in soils with flooding can enhance the release of soil P to overlying water, but little information is available for soils with a long history of manure application. We examined the P release from manure-amended soils under simulated snowmelt flooding. Intact monoliths from manured (solid swine manure [SSM] or liquid swine manure [LSM]) and unamended (control) field plots were collected from Carman, Manitoba. Monoliths were frozen for 7 d, thawed, flooded, and incubated at 4 ± 1 °C. Redox potential, pH, and concentrations of dissolved reactive P (DRP), Ca, Mg, Fe, and Mn in pore water and floodwater were determined weekly up to 56 d after flooding (DAF) and at 84 DAF. Redox potential decreased with DAF with a greater and more rapid decrease in SSM (from ∼300 to <0 mV by 84 DAF) compared with LSM and control (∼100 mV by 84 DAF). Pore water and floodwater DRP concentrations were significantly greater in manured treatments than in the control at all DAFs and in SSM than in LSM for most DAF. Whereas floodwater DRP concentrations remained relatively stable in the control treatment, concentrations in manured treatments increased substantially from the onset of flooding to 35-42 DAF (threefold to fourfold increase) and remained relatively stable thereafter. Significantly greater P release from SSM- than from LSM-treated monoliths was due to greater input of P and the higher organic matter content in SSM-treated soils. These favored the rapid development of anaerobic conditions that further induced P release.


Asunto(s)
Estiércol , Suelo , Animales , Inundaciones , Congelación , Fósforo , Porcinos
6.
J Environ Qual ; 50(1): 215-227, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33305377

RESUMEN

Enhanced phosphorus (P) release from flooded, anaerobic soils has been extensively studied under summer temperatures but not under cold temperatures with intermittent freeze-thaw events. We investigated the temperature and freeze-thaw effects during flooding on the release of P to floodwater from soil monoliths (15-cm depth) collected from eight agricultural fields in Manitoba. Soil monoliths were flooded with reverse osmosis water and incubated for 56 d under simulated summer flooding (SSF; 22 ± 1 °C) or snowmelt flooding with intermittent freeze-thaw (IFT; 4 ± 1 °C with intermittent freezing) in triplicates. Redox potential (Eh), pore water and floodwater dissolved reactive P (DRP) concentrations, pH, and concentrations of Ca, Mg, Fe, and Mn were determined weekly. In seven soils, Eh decreased rapidly with days after flooding (DAF) under SSF to values <200 mV but not under IFT. Both pore water and floodwater DRP concentrations significantly increased with DAF in all soils under SSF and in seven soils under IFT. Although DRP concentrations were consistently greater under SSF than IFT in four soils, other soils had similar concentrations at certain DAF. Significant relationships between ion concentrations and redox status that fitted both IFT and SSF data in most soils suggest that similar redox-driven mechanisms are responsible for the P release; however, less P was released under IFT than under SSF because soils were not severely reduced under IFT. Substantial P release in a few soils under IFT appeared to be unrelated to redox status, suggesting other P release mechanisms that are not redox driven.


Asunto(s)
Fósforo , Contaminantes del Suelo , Inundaciones , Congelación , Estaciones del Año , Suelo , Contaminantes del Suelo/análisis
7.
J Environ Qual ; 49(3): 700-711, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33016390

RESUMEN

Increased phosphorus (P) availability under flooded, anaerobic conditions may accelerate P loss from soils to water bodies. Existing knowledge on P release to floodwater from flooded soils is limited to summer conditions and/or room temperatures. Spring snowmelt runoff, which occurs under cold temperatures with frequent freeze-thaw events, is the dominant mode of P loss from agricultural lands to water bodies in the Canadian Prairies. This research examined the effects of temperature on P dynamics under flooded conditions in a laboratory study using five agricultural soils from Manitoba, Canada. The treatments were (a) freezing for 1 wk at -20 °C, thawing and flooding at 4 ± 1 °C (frozen, cold); (b) flooding unfrozen soil at 4 ± 1 °C (unfrozen, cold); and (c) flooding unfrozen soil at 20 ± 2 °C (warm). Pore water and surface water were collected weekly over 8 wk and analyzed for dissolved reactive phosphorus (DRP), pH, calcium, magnesium, iron (Fe), and manganese (Mn). Soils under warm flooding showed enhanced P release with significantly higher DRP concentrations in pore and surface floodwater compared with cold flooding of frozen and unfrozen soils. The development of anaerobic conditions was slow under cold flooding with only a slight decrease in Eh, whereas under warm flooding Eh declined sharply, favoring reductive dissolution reactions releasing P, Fe, and Mn. Pore water and floodwater DRP concentrations were similar between frozen and unfrozen soil under cold flooding, suggesting that one freeze-thaw event prior to flooding had minimal effect on P release under simulated snowmelt conditions.


Asunto(s)
Fósforo/análisis , Suelo , Anaerobiosis , Canadá , Congelación , Temperatura
8.
Environ Technol ; 41(9): 1101-1106, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30198835

RESUMEN

In this study, cattail (Typha latifolia) was used to remove Na+ and Cl- from polluted soil (PS) in a solid waste open dumping site. Hydroponic system was also evaluated to remove Na+ and Cl- from landfill leachate. The results indicated that the cattail grown in PS had higher biomass yield of 44.4 ± 3.29 g compared to that of control (35.3 ± 4.28 g). Nitrogen and phosphorous contents of cattails grown in PS were also higher than that of control plants, and the electrical conductivity of PS significantly decreased from 245 ± 1.40 to 51.9 ± 9.30 ms/m over the 5-week experimental duration. Na+ and Cl- contents from cattail grown on PS were 10.8 ± 1.85 and 64.7 ± 9.15 g/kg biomass, respectively. For cattails grown hydroponically in water containing leachate, nitrogen and phosphorous accumulation was 51.1 ± 5.94 and 9.32 ± 3.22 g/kg biomass, respectively. The corresponding biomass yield of these cattails was 13.5 ± 1.29 g at the end of 5 weeks. In addition, the Na+ and Cl- accumulation of 55.5 ± 4.82 and 78.2 ± 28.3 g/Kg biomass, respectively, was higher in hydroponic cattails grown in this study. Overall, the results suggest the effectiveness of cattails for phytoremediation of contaminated soil and the high efficiency of hydroponic system for nutrient and salinity removal compared to the conventional soil test.


Asunto(s)
Typhaceae , Contaminantes Químicos del Agua , Biodegradación Ambiental , Suelo , Instalaciones de Eliminación de Residuos
9.
J Environ Qual ; 48(1): 127-135, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30640341

RESUMEN

The effectiveness of gypsum in reducing runoff P losses from soils and the mechanisms responsible are well documented; however, gypsum amendment effects in reducing redox-induced P losses from flooded soils are less researched and documented. We examined the effect of gypsum amendment on P release from freshly manured soils to pore water and floodwater with continuous flooding for 56 d in the laboratory. Three soils (Pembina, Denham, and Dencross series) collected from Manitoba, Canada, were preincubated with liquid swine manure. Each preincubated manured soil was packed into vessels with or without recycled wallboard gypsum in triplicates and flooded for 56 d, during which pore water and floodwater were sampled weekly and analyzed for pH and dissolved reactive P (DRP), Ca, Mg, Fe, and Mn concentrations. Change in soil redox potential (Eh) with flooding was also monitored. Wallboard gypsum amendment significantly decreased the pore water and surface floodwater DRP concentrations in all three soils for most days after flooding (DAF). The Dencross soil, which had Olsen P about fivefold greater than the other soils, showed the greatest magnitude decrease in DRP concentration with gypsum amendment, by 1.27 mg L on 49 DAF and 0.99 mg L on 21 DAF for pore water and floodwater, respectively. Gypsum amendment (i) delayed the Eh reduction with flooding beyond +200 mV, (ii) decreased pore water pH, and (iii) increased concentrations of Ca, Mg, and Mn in pore water favoring precipitation of P, all of which may have directly or indirectly reduced the P release from flooded soils to overlying floodwater.


Asunto(s)
Estiércol , Suelo , Animales , Sulfato de Calcio , Canadá , Oxidación-Reducción , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...